ترغب بنشر مسار تعليمي؟ اضغط هنا

What We See and What We Get from Visualization: Eye Tracking Beyond Gaze Distributions and Scanpaths

78   0   0.0 ( 0 )
 نشر من قبل Kuno Kurzhals
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Technical progress in hardware and software enables us to record gaze data in everyday situations and over long time spans. Among a multitude of research opportunities, this technology enables visualization researchers to catch a glimpse behind performance measures and into the perceptual and cognitive processes of people using visualization techniques. The majority of eye tracking studies performed for visualization research is limited to the analysis of gaze distributions and aggregated statistics, thus only covering a small portion of insights that can be derived from gaze data. We argue that incorporating theories and methodology from psychology and cognitive science will benefit the design and evaluation of eye tracking experiments for visualization. This position paper outlines our experiences with eye tracking in visualization and states the benefits that an interdisciplinary research field on visualization psychology might bring for better understanding how people interpret visualizations.

قيم البحث

اقرأ أيضاً

Anonymous peer review is used by the great majority of computer science conferences. OpenReview is such a platform that aims to promote openness in peer review process. The paper, (meta) reviews, rebuttals, and final decisions are all released to pub lic. We collect 5,527 submissions and their 16,853 reviews from the OpenReview platform. We also collect these submissions citation data from Google Scholar and their non-peer-review
The learning rate is an information-theoretical quantity for bipartite Markov chains describing two coupled subsystems. It is defined as the rate at which transitions in the downstream subsystem tend to increase the mutual information between the two subsystems, and is bounded by the dissipation arising from these transitions. Its physical interpretation, however, is unclear, although it has been used as a metric for the sensing performance of the downstream subsystem. In this paper, we explore the behaviour of the learning rate for a number of simple model systems, establishing when and how its behaviour is distinct from the instantaneous mutual information between subsystems. In the simplest case, the two are almost equivalent. In more complex steady-state systems, the mutual information and the learning rate behave qualitatively distinctly, with the learning rate clearly now reflecting the rate at which the downstream system must update its information in response to changes in the upstream system. It is not clear whether this quantity is the most natural measure for sensor performance, and, indeed, we provide an example in which optimising the learning rate over a region of parameter space of the downstream system yields an apparently sub-optimal sensor.
We investigate the effects of multi-task learning using the recently introduced task of semantic tagging. We employ semantic tagging as an auxiliary task for three different NLP tasks: part-of-speech tagging, Universal Dependency parsing, and Natural Language Inference. We compare full neural network sharing, partial neural network sharing, and what we term the learning what to share setting where negative transfer between tasks is less likely. Our findings show considerable improvements for all tasks, particularly in the learning what to share setting, which shows consistent gains across all tasks.
93 - Jessica D. Mink 2015
Despite almost all being acquired as photons, astronomical data from different instruments and at different stages in its life may exist in different formats to serve different purposes. Beyond the data itself, descriptive information is associated w ith it as metadata, either included in the data format or in a larger multi-format data structure. Those formats may be used for the acquisition, processing, exchange, and archiving of data. It has been useful to use similar formats, or even a single standard to ease interaction with data in its various stages using familiar tools. Knowledge of the evolution and advantages of present standards is useful before we discuss the future of how astronomical data is formatted. The evolution of the use of world coordinates in FITS is presented as an example.
Learning problems form an important category of computational tasks that generalizes many of the computations researchers apply to large real-life data sets. We ask: what concept classes can be learned privately, namely, by an algorithm whose output does not depend too heavily on any one input or specific training example? More precisely, we investigate learning algorithms that satisfy differential privacy, a notion that provides strong confidentiality guarantees in contexts where aggregate information is released about a database containing sensitive information about individuals. We demonstrate that, ignoring computational constraints, it is possible to privately agnostically learn any concept class using a sample size approximately logarithmic in the cardinality of the concept class. Therefore, almost anything learnable is learnable privately: specifically, if a concept class is learnable by a (non-private) algorithm with polynomial sample complexity and output size, then it can be learned privately using a polynomial number of samples. We also present a computationally efficient private PAC learner for the class of parity functions. Local (or randomized response) algorithms are a practical class of private algorithms that have received extensive investigation. We provide a precise characterization of local private learning algorithms. We show that a concept class is learnable by a local algorithm if and only if it is learnable in the statistical query (SQ) model. Finally, we present a separation between the power of interactive and noninteractive local learning algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا