ﻻ يوجد ملخص باللغة العربية
In this paper we consider the homogenization of the evolution problem associated with a jump process that involves three different smooth kernels that govern the jumps to/from different parts of the domain. We assume that the spacial domain is divided into a sequence of two subdomains $A_n cup B_n$ and we have three different smooth kernels, one that controls the jumps from $A_n$ to $A_n$, a second one that controls the jumps from $B_n$ to $B_n$ and the third one that governs the interactions between $A_n$ and $B_n$.Assuming that $chi_{A_n} (x) to X(x)$ weakly in $L^infty$ (and then $chi_{B_n} (x) to 1-X(x)$ weakly in $L^infty$) as $n to infty$ and that the initial condition is given by a density $u_0$ in $L^2$ we show that there is an homogenized limit system in which the three kernels and the limit function $X$ appear. When the initial condition is a delta at one point, $delta_{bar{x}}$ (this corresponds to the process that starts at $bar{x}$) we show that there is convergence along subsequences such that $bar{x} in A_{n_j}$ or $bar{x} in B_{n_j}$ for every $n_j$ large enough. We also provide a probabilistic interpretation of this evolution equation in terms of a stochastic process that describes the movement of a particle that jumps in $Omega$ according to the three different kernels and show that the underlying process converges in distribution to a limit process associated with the limit equation. We focus our analysis in Neumann type boundary conditions and briefly describe at the end how to deal with Dirichlet boundary conditions.
This work is devoted to the asymptotic behavior of eigenvalues of an elliptic operator with rapidly oscillating random coefficients on a bounded domain with Dirichlet boundary conditions. A sharp convergence rate is obtained for isolated eigenvalues
By means of variational methods we establish existence and multiplicity of solutions for a class of nonlinear nonlocal problems involving the fractional p-Laplacian and a combined Sobolev and Hardy nonlinearity at subcritical and critical growth.
Consider a linear elliptic partial differential equation in divergence form with a random coefficient field. The solution-operator displays fluctuations around itsexpectation. The recently-developed pathwise theory of fluctuations in stochastic homog
This work develops a quantitative homogenization theory for random suspensions of rigid particles in a steady Stokes flow, and completes recent qualitative results. More precisely, we establish a large-scale regularity theory for this Stokes problem,
In this paper we find viscosity solutions to a coupled system composed by two equations, the first one is parabolic and driven by the infinity Laplacian while the second one is elliptic and involves the usual Laplacian. We prove that there is a two-p