ﻻ يوجد ملخص باللغة العربية
Intelligent reflecting surface (IRS), which consists of a large number of tunable reflective elements, is capable of enhancing the wireless propagation environment in a cellular network by intelligently reflecting the electromagnetic waves from the base-station (BS) toward the users. The optimal tuning of the phase shifters at the IRS is, however, a challenging problem, because due to the passive nature of reflective elements, it is difficult to directly measure the channels between the IRS, the BS, and the users. Instead of following the traditional paradigm of first estimating the channels then optimizing the system parameters, this paper advocates a machine learning approach capable of directly optimizing both the beamformers at the BS and the reflective coefficients at the IRS based on a system objective. This is achieved by using a deep neural network to parameterize the mapping from the received pilots (plus any additional information, such as the user locations) to an optimized system configuration, and by adopting a permutation invariant/equivariant graph neural network (GNN) architecture to capture the interactions among the different users in the cellular network. Simulation results show that the proposed implicit channel estimation based approach is generalizable, can be interpreted, and can efficiently learn to maximize a sum-rate or minimum-rate objective from a much fewer number of pilots than the traditional explicit channel estimation based approaches.
Channel estimation is the main hurdle to reaping the benefits promised by the intelligent reflecting surface (IRS), due to its absence of ability to transmit/receive pilot signals as well as the huge number of channel coefficients associated with its
This paper proposes a novel framework of resource allocation in intelligent reflecting surface (IRS) aided multi-cell non-orthogonal multiple access (NOMA) networks, where a sum-rate maximization problem is formulated. To address this challenging mix
The fundamental intelligent reflecting surface (IRS) deployment problem is investigated for IRS-assisted networks, where one IRS is arranged to be deployed in a specific region for assisting the communication between an access point (AP) and multiple
In the intelligent reflecting surface (IRS) assisted communication systems, the acquisition of channel state information (CSI) is a crucial impediment for achieving the passive beamforming gain of IRS because of the considerable overhead required for
This paper investigates the uplink cascaded channel estimation for intelligent-reflecting-surface (IRS)-assisted multi-user multiple-input-single-output systems. We focus on a sub-6 GHz scenario where the channel propagation is not sparse and the num