ﻻ يوجد ملخص باللغة العربية
We have shown that the weak-coupling limit superconductors are well described by $ q sim 1 $, where $ q $ is a real parameter which characterizes the degree of nonextensivity of Tsallis entropy. Nevertheless, small deviations with respect to q=1 provide better agreement when compared with experimental results. We have also shown that the generalized BCS theory with $ q eq 1 $ exhibit power-law behavior of several measurable macroscopic functions in the low-temperature regime. These power-law properties are found in many high-Tc oxides superconductors and motivated us to extend Tsallis entropy calculations to these systems. Therefore, we have calculated the phase diagram and the specific heat and we compare our results with the experimental data for the YBCO compound.
In this paper, we study the thermodynamics of quantum harmonic oscillator in the Tsallis framework and in the presence of a minimal length uncertainty. The existence of the minimal length is motivated by various theories such as string theory, loop q
We will present elementary scaling arguments focussed on the thermodynamics in the proximity of the quantum critical point in the cuprate superconductors. Extending the analysis centered on the Gruneisen parameter by Rosch, Si and coworkers to the cu
There is no accepted mechanism that explains the equilibrium structures that form in collisionless cosmological N-body simulations. Recent work has identified nonextensive thermodynamics as an innovative approach to the problem. The distribution func
The BCS-BEC crossover from strongly overlapping Cooper pairs to non-overlapping composite bosons in the strong coupling limit has been a long-standing issue of interacting many-body fermion systems. Recently, FeSe semimetal with hole and electron ban
J. E. Hirsch [EPL 130 (2020) 17006] claimed an inconsistency between thermodynamics and the theory of superconductivity. We argue that he overlooked a crucial term which determines the supercurrent dynamics and ensures energy conservation by providin