ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the origin of low-metallicity stars in Milky Way-like galaxies with the NIHAO-UHD simulations

71   0   0.0 ( 0 )
 نشر من قبل Federico Sestito
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The kinematics of the most metal-poor stars provide a window into the early formation and accretion history of the Milky Way. Here, we use 5~high-resolution cosmological zoom-in simulations ($sim~5times10^6$ star particles) of Milky Way-like galaxies taken from the NIHAO-UHD project, to investigate the origin of low-metallicity stars ([Fe/H]$leq-2.5$). The simulations show a prominent population of low-metallicity stars confined to the disk plane, as recently discovered in the Milky Way. The ubiquity of this finding suggests that the Milky Way is not unique in this respect. Independently of the accretion history, we find that $gtrsim~90$ per cent of the retrograde stars in this population are brought in during the initial build-up of the galaxies during the first few Gyrs after the Big Bang. Our results therefore highlight the great potential of the retrograde population as a tracer of the early build-up of the Milky Way. The prograde planar population, on the other hand, is accreted during the later assembly phase and samples the full galactic accretion history. In case of a quiet accretion history, this prograde population is mainly brought in during the first half of cosmic evolution ($tlesssim7$~Gyr), while, in the case of an on-going active accretion history, later mergers on prograde orbits are also able to contribute to this population. Finally, we note that the Milky Way shows a rather large population of eccentric, very metal-poor planar stars. This is a feature not seen in most of our simulations, with the exception of one simulation with an exceptionally active early building phase.



قيم البحث

اقرأ أيضاً

Simulating thin and extended galactic disks has long been a challenge in computational astrophysics. We introduce the NIHAO-UHD suite of cosmological hydrodynamical simulations of Milky Way mass galaxies and study stellar disk properties such as stel lar mass, size and rotation velocity which agree well with observations of the Milky Way and local galaxies. In particular, the simulations reproduce the age-velocity dispersion relation and a multi-component stellar disk as observed for the Milky Way. Half of our galaxies show a double exponential vertical profile, while the others are well described by a single exponential model which we link to the disk merger history. In all cases, mono-age populations follow a single exponential whose scale height varies monotonically with stellar age and radius. The scale length decreases with stellar age while the scale height increases. The general structure of the stellar disks is already set at time of birth as a result of the inside-out and upside-down formation. Subsequent evolution modifies this structure by increasing both the scale length and height of all mono-age populations. Thus, our results put tight constraints on how much dynamical memory stellar disks can retain over cosmological timescales. Our simulations demonstrate that it is possible to form thin galactic disks in cosmological simulations provided there are no significant stellar mergers at low redshifts. Most of the stellar mass is formed in-situ with only a few percent ($lesssim5%$) brought in by merging satellites at early times. Redshift zero snapshots and halo catalogues are publicly available.
We present a metallicity analysis of 83 late-type giants within the central 1 pc of the Milky Way. K-band spectroscopy of these stars were obtained with the medium-spectral resolution integral-field spectrograph NIFS on Gemini North using laser-guide star adaptive optics. Using spectral template fitting with the MARCS synthetic spectral grid, we find that there is large variation in metallicity, with stars ranging from [M/H] $<$ -1.0 to above solar metallicity. About 6% of the stars have [M/H] $<$ -0.5. This result is in contrast to previous observations, with smaller samples, that show stars at the Galactic center have approximately solar metallicity with only small variations. Our current measurement uncertainties are dominated by systematics in the model, especially at [M/H] $>$ 0, where there are stellar lines not represented in the model. However, the conclusion that there are low metallicity stars, as well as large variations in metallicity is robust. The metallicity may be an indicator of the origin of these stars. The low-metallicity population is consistent with that of globular clusters in the Milky Way, but their small fraction likely means that globular cluster infall is not the dominant mechanism for forming the Milky Way nuclear star cluster. The majority of stars are at or above solar metallicity, which suggests they were formed closer to the Galactic center or from the disk. In addition, our results indicate that it will be important for star formation history analyses using red giants at the Galactic center to consider the effect of varying metallicity.
201 - Ryan McKinnon 2015
We introduce a dust model for cosmological simulations implemented in the moving-mesh code AREPO and present a suite of cosmological hydrodynamical zoom-in simulations to study dust formation within galactic haloes. Our model accounts for the stellar production of dust, accretion of gas-phase metals onto existing grains, destruction of dust through local supernova activity, and dust driven by winds from star-forming regions. We find that accurate stellar and active galactic nuclei feedback is needed to reproduce the observed dust-metallicity relation and that dust growth largely dominates dust destruction. Our simulations predict a dust content of the interstellar medium which is consistent with observed scaling relations at $z = 0$, including scalings between dust-to-gas ratio and metallicity, dust mass and gas mass, dust-to-gas ratio and stellar mass, and dust-to-stellar mass ratio and gas fraction. We find that roughly two-thirds of dust at $z = 0$ originated from Type II supernovae, with the contribution from asymptotic giant branch stars below 20 per cent for $z gtrsim 5$. While our suite of Milky Way-sized galaxies forms dust in good agreement with a number of key observables, it predicts a high dust-to-metal ratio in the circumgalactic medium, which motivates a more realistic treatment of thermal sputtering of grains and dust cooling channels.
Stellar ages are a crucial component to studying the evolution of the Milky Way. Using Gaia DR2 distance estimates, it is now possible to estimate stellar ages for a larger volume of evolved stars through isochrone matching. This work presents [M/H]- age and [$alpha$/M]-age relations derived for different spatial locations in the Milky Way disc. These relations are derived by hierarchically modelling the star formation history of stars within a given chemical abundance bin. For the first time, we directly observe that significant variation is apparent in the [M/H]-age relation as a function of both Galactocentric radius and distance from the disc mid-plane. The [M/H]-age relations support claims that radial migration has a significant effect in the plane of the disc. Using the [M/H] bin with the youngest mean age at each radial zone in the plane of the disc, the present-day metallicity gradient is measured to be $-0.059 pm 0.010$ dex kpc$^{-1}$, in agreement with Cepheids and young field stars. We find a vertically flared distribution of young stars in the outer disc, confirming predictions of models and previous observations. The mean age of the [M/H]-[$alpha$/M] distribution of the solar neighborhood suggests that the high-[M/H] stars are not an evolutionary extension of the low-$alpha$ sequence. Our observational results are important constraints to Galactic simulations and models of chemical evolution.
157 - X. H. Sun , W. Reich 2012
(Abridged) We study the polarisation properties, magnetic field strength, and synchrotron emission scale-height of Milky-Way-like galaxies in comparison with other spiral galaxies. We use our 3D-emission model of the Milky Way Galaxy for viewing the Milky Way from outside at various inclinations as spiral galaxies are observed. When seen edge-on the synchrotron emission from the Milky Way has an exponential scale-height of about 0.74 kpc, which is much smaller than the values obtained from previous models. We find that current analysis methods overestimate the scale-height of synchrotron emission of galaxies by about 10% at an inclination of 80 degree and about 40% at an inclination of 70 degree because of contamination from the disk. The observed RMs for face-on galaxies derived from high-frequency polarisation measurements approximate to the Faraday depths (FDs) when scaled by a factor of two. For edge-on galaxies, the observed RMs are indicative of the orientation of the large-scale magnetic field, but are not well related with the FDs. Assuming energy equipartition between the magnetic field and particles for the Milky Way results in an average magnetic-field strength, which is about two times larger than the intrinsic value for a K factor of 100. The number distribution of the integrated polarisation percentages of a large sample of unresolved Milky-Way-like galaxies peaks at about 4.2% at 4.8 GHz and at about 0.8% at 1.4GHz. Integrated polarisation angles rotated by 90 degree align very well with the position angles of the major axes, implying that unresolved galaxies do not have intrinsic RMs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا