ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of molecular beam effusion cell quality on optical and electrical properties of quantum dots and quantum wells

118   0   0.0 ( 0 )
 نشر من قبل Giang Nam Nguyen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum dot heterostructures with excellent low-noise properties became possible with high purity materials recently. We present a study on molecular beam epitaxy grown quantum wells and quantum dots with a contaminated aluminum evaporation cell, which introduced a high amount of impurities, perceivable in anomalies in optical and electrical measurements. We describe a way of addressing this problem and find that reconditioning the aluminum cell by overheating can lead to a full recovery of the anomalies in photoluminescence and capacitance-voltage measurements, leading to excellent low noise heterostructures. Furthermore, we propose a method to sense photo-induced trap charges using capacitance-voltage spectroscopy on self-assembled quantum dots. Excitation energy-dependent ionization of defect centers leads to shifts in capacitance-voltage spectra which can be used to determine the charge density of photo-induced trap charges via 1D band structure simulations. This method can be performed on frequently used quantum dot diode structures.



قيم البحث

اقرأ أيضاً

151 - X. M. Lu , M. Koyama , Y. Izumi 2012
We studied the size distribution and its scaling behavior of self-assembled InAlAs/AlGaAs quantum dots (QDs) grown on GaAs with the Stranski-Krastanov (SK) mode by molecular beam epitaxy (MBE), at both 480{deg}C and 510{deg}C, as a function of InAlAs coverage. A scaling function of the volume was found for the first time in ternary alloy QDs. The function was similar to that of InAs/GaAs QDs, which agreed with the scaling function for the two-dimensional submonolayer homoepitaxy simulation with a critical island size of i = 1. However, a character of i = 0 was also found as a tail in the large volume.
82 - N. Baer , S. Schulz , P. Gartner 2006
The electronic and optical properties of self-assembled InN/GaN quantum dots (QDs) are investigated by means of a tight-binding model combined with configuration interaction calculations. Tight-binding single particle wave functions are used as a bas is for computing Coulomb and dipole matrix elements. Within this framework, we analyze multi-exciton emission spectra for two different sizes of a lens-shaped InN/GaN QD with wurtzite crystal structure. The impact of the symmetry of the involved electron and hole one-particle states on the optical spectra is discussed in detail. Furthermore we show how the characteristic features of the spectra can be interpreted using a simplified Hamiltonian which provides analytical results for the interacting multi-exciton complexes. We predict a vanishing exciton and biexciton ground state emission for small lens-shaped InN/GaN QDs. For larger systems we report a bright ground state emission but with drastically reduced oscillator strengths caused by the quantum confined Stark effect.
We demonstrate the growth of GaN/AlN quantum well structures by plasma-assisted molecular-beam epitaxy by taking advantage of the surfactant effect of Ga. The GaN/AlN quantum wells show photoluminescence emission with photon energies in the range bet ween 4.2 and 2.3 eV for well widths between 0.7 and 2.6 nm, respectively. An internal electric field strength of $9.2pm 1.0$ MV/cm is deduced from the dependence of the emission energy on the well width.
We report results of investigations of structural and transport properties of GaAs/Ga(1-x)In(x)As/GaAs quantum wells (QWs) having a 0.5-1.8 ML thick Mn layer, separated from the QW by a 3 nm thick spacer. The structure has hole mobility of about 2000 cm2/(V*s) being by several orders of magnitude higher than in known ferromagnetic two-dimensional structures. The analysis of the electro-physical properties of these systems is based on detailed study of their structure by means of high-resolution X-ray diffractometry and glancing-incidence reflection, which allow us to restore the depth profiles of structural characteristics of the QWs and thin Mn containing layers. These investigations show absence of Mn atoms inside the QWs. The quality of the structures was also characterized by photoluminescence spectra from the QWs. Transport properties reveal features inherent to ferromagnetic systems: a specific maximum in the temperature dependence of the resistance and the anomalous Hall effect (AHE) observed in samples with both metallic and activated types of conductivity up to ~100 K. AHE is most pronounced in the temperature range where the resistance maximum is observed, and decreases with decreasing temperature. The results are discussed in terms of interaction of 2D-holes and magnetic Mn ions in presence of large-scale potential fluctuations related to random distribution of Mn atoms. The AHE values are compared with calculations taking into account its intrinsic mechanism in ferromagnetic systems.
Previous single-particle spectroscopic studies of colloidal quantum dots have indicated a significant spread in biexciton lifetimes across an ensemble of nominally identical nanocrystals. It has been speculated that in addition to dot-to-dot variatio n in physical dimensions, this spread is contributed to by variations in the structure of the quantum dot interface, which controls the shape of the confinement potential. Here we directly evaluate the effect of the composition of the core-shell interface on single- and multi-exciton dynamics via side-by-side measurements of individual core-shell CdSe-CdS nanocrystals with a sharp vs. smooth (graded) interface. To realize the latter type of structures, we incorporate a CdSexS1-x alloy layer of controlled composition and thickness between the CdSe core and the CdS shell. We observe that while having essentially no effect on single-exciton decay, the interfacial alloy layer leads to a systematic increase in biexciton lifetimes. This observation provides direct experimental evidence that in addition to the size of the quantum dot, its interfacial properties also significantly affect the rate of Auger recombination, which governs biexciton decay. These findings help rationalize previous observations of a significant heterogeneity in the biexciton lifetimes across similarly sized quantum dots and should facilitate the development of Auger-recombination-free colloidal nanostructures for a range of applications from lasers and light-emitting diodes to photodetectors and solar cells.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا