ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic domains and domain wall pinning in two-dimensional ferromagnets revealed by nanoscale imaging

119   0   0.0 ( 0 )
 نشر من قبل Qi-Chao Sun
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic-domain structure and dynamics play an important role in understanding and controlling the magnetic properties of two-dimensional magnets, which are of interest to both fundamental studies and applications[1-5]. However, the probe methods based on the spin-dependent optical permeability[1,2,6] and electrical conductivity[7-10] can neither provide quantitative information of the magnetization nor achieve nanoscale spatial resolution. These capabilities are essential to image and understand the rich properties of magnetic domains. Here, we employ cryogenic scanning magnetometry using a single-electron spin of a nitrogen-vacancy center in a diamond probe to unambiguously prove the existence of magnetic domains and study their dynamics in atomically thin CrBr$_3$. The high spatial resolution of this technique enables imaging of magnetic domains and allows to resolve domain walls pinned by defects. By controlling the magnetic domain evolution as a function of magnetic field, we find that the pinning effect is a dominant coercivity mechanism with a saturation magnetization of about 26~$mu_B$/nm$^2$ for bilayer CrBr$_3$. The magnetic-domain structure and pinning-effect dominated domain reversal process are verified by micromagnetic simulation. Our work highlights scanning nitrogen-vacancy center magnetometry as a quantitative probe to explore two-dimensional magnetism at the nanoscale.



قيم البحث

اقرأ أيضاً

115 - Jun Chen , Shuai Dong 2021
Controlling magnetism using voltage is highly desired for applications, but remains challenging due to fundamental contradiction between polarity and magnetism. Here we propose a mechanism to manipulate magnetic domain walls in ferrimagnetic or ferro magnetic multiferroics using electric field. Different from those studies based on static domain-level couplings, here the magnetoelectric coupling relies on the collaborative spin dynamics around domain walls. Accompanying the reversal of spin chirality driven by polarization switching, a rolling-downhill-like motion of domain wall is achieved at the nanoscale, which tunes the magnetization locally. Our mechanism opens an alternative route to pursuit practical and fast converse magnetoelectric functions via spin dynamics.
170 - Voicu O. Dolocan 2015
Interactions between pairs of magnetic domain walls (DW) and pinning by radial constrictions were studied in cylindrical nanowires with surface roughness. It was found that a radial constriction creates a symmetric pinning potential well, with a chan ge of slope when the DW is situated outside the notch. Surface deformation induces an asymmetry in the pinning potential as well as dynamical pinning. The depinning fields of the domain walls were found generally to decrease with increasing surface roughness. A DW pinned at a radial constriction creates a pinning potential well for a free DW in a parallel wire. We determined that trapped bound DW states appear above the depinning threshold and that the surface roughness facilitates the trapped bound DW states in parallel wires.
We have investigated the domain wall resistance for two types of domain walls in a (Ga,Mn)As Hall bar with perpendicular magnetization. A sizeable positive intrinsic DWR is inferred for domain walls that are pinned at an etching step, which is quite consistent with earlier observations. However, much lower intrinsic domain wall resistance is obtained when domain walls are formed by pinning lines in unetched material. This indicates that the spin transport across a domain wall is strongly influenced by the nature of the pinning.
The motion of a domain wall in a two dimensional medium is studied taking into account the internal elastic degrees of freedom of the wall and geometrical pinning produced both by holes and sample boundaries. This study is used to analyze the geometr ical conditions needed for optimizing crossed ratchet effects in periodic rectangular arrays of asymmetric holes, recently observed experimentally in patterned ferromagnetic films. Geometrical calculations and numerical simulations have been used to obtain the anisotropic critical fields for depinning flat and kinked walls in rectangular arrays of triangles. The aim is to show with a generic elastic model for interfaces how to build a rectifier able to display crossed ratchet effects or effective potential landscapes for controlling the motion of interfaces or invasion fronts.
Topological defects such as magnetic solitons, vortices, Bloch lines, and skyrmions have started to play an important role in modern magnetism because of their extraordinary stability, which can be exploited in the production of memory devices. Recen tly, a novel type of antisymmetric exchange interaction, namely the Dzyaloshinskii-Moriya interaction (DMI), has been uncovered and found to influence the formation of topological defects. Exploring how the DMI affects the dynamics of topological defects is therefore an important task. Here we investigate the dynamic domain wall (DW) under a strong DMI and find that the DMI induces an annihilation of topological vertical Bloch lines (VBLs) by lifting the four-fold degeneracy of the VBL. As a result, velocity reduction originating from the Walker breakdown is completely suppressed, leading to a soliton-like constant velocity of the DW. Furthermore, the strength of the DMI, which is the key factor for soliton-like DW motion, can be quantified without any side effects possibly arising from current-induced torques or extrinsic pinnings in magnetic films. Our results therefore shed light on the physics of dynamic topological defects, which paves the way for future work in topology-based memory applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا