ترغب بنشر مسار تعليمي؟ اضغط هنا

Large magnetoresistance observed in {alpha}-Sn/InSb heterostructures

289   0   0.0 ( 0 )
 نشر من قبل Yuanfeng Ding
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this study, we report the epitaxial growth of a series of {alpha}-Sn films on InSb substrate by molecular beam epitaxy (MBE) with thickness varying from 10 nm to 400 nm. High qualities of the {alpha}-Sn films are confirmed. An enhanced large magnetoresistance (MR) over 450,000% has been observed compared to that of the bare InSb substrate. Thickness, angle and temperature dependent MR are used to demonstrate the effects of {alpha}-Sn films on the electrical transport properties.

قيم البحث

اقرأ أيضاً

We investigate the spin Hall magnetoresistance (SMR) at room temperature in thin film heterostructures of antiferromagnetic, insulating, (0001)-oriented alpha-Fe2O3 (hematite) and Pt. We measure their longitudinal and transverse resistivities while r otating an applied magnetic field of up to 17T in three orthogonal planes. For out-of-plane magnetotransport measurements, we find indications for a multidomain antiferromagnetic configuration whenever the field is aligned along the film normal. For in-plane field rotations, we clearly observe a sinusoidal resistivity oscillation characteristic for the SMR due to a coherent rotation of the Neel vector. The maximum SMR amplitude of 0.25% is, surprisingly, twice as high as for prototypical ferrimagnetic Y3Fe5O12/Pt heterostructures. The SMR effect saturates at much smaller magnetic fields than in comparable antiferromagnets, making the alpha-Fe2O3/Pt system particularly interesting for room-temperature antiferromagnetic spintronic applications.
Three-dimensional (3D) topological Dirac semimetals (TDSs) are rare but important as a versatile platform for exploring exotic electronic properties and topological phase transitions. A quintessential feature of TDSs is 3D Dirac fermions associated w ith bulk electronic states near the Fermi level. Using angle-resolved photoemission spectroscopy (ARPES), we have observed such bulk Dirac cones in epitaxially-grown {alpha}-Sn films on InSb(111), the first such TDS system realized in an elemental form. First-principles calculations confirm that epitaxial strain is key to the formation of the TDS phase. A phase diagram is established that connects the 3D TDS phase through a singular point of a zero-gap semimetal phase to a topological insulator (TI) phase. The nature of the Dirac cone crosses over from 3D to 2D as the film thickness is reduced.
We report on resonant tunneling magnetoresistance via localized states through a ZnSe semiconducting barrier which can reverse the sign of the effective spin polarization of tunneling electrons. Experiments performed on Fe/ZnSe/Fe planar junctions ha ve shown that positive, negative or even its sign-reversible magnetoresistance can be obtained, depending on the bias voltage, the energy of localized states in the ZnSe barrier and spatial symmetry. The averaging of conduction over all localized states in a junction under resonant condition is strongly detrimental to the magnetoresistance.
We report a detailed ab initio study of two superlattice heterostructures, one component of which is a unit cell of CuPt ordered InSb_(0.5)As_(0.5). This alloy part of the heterostructures is a topological semimetal. The other component of each syste m is a semiconductor, zincblende-InSb, and wurtzite-InAs. Both heterostructures are semiconductors. Our theoretical analysis predicts that the variation in the thickness of the InSb layer in InSb/InSb_(0.5)As_(0.5) heterostructure renders altered band gaps with different characteristics (i.e. direct or indirect). The study holds promise for fabricating heterostructures, in which the modulation of the thickness of the layers changes the number of carrier pockets in these systems.
The unidirectional magnetoresistance (UMR) is one of the most complex spin-dependent transport phenomena in ferromagnet/non-magnet bilayers, which involves spin injection and accumulation due to the spin Hall effect (SHE) or Rashba-Edelstein effect ( REE), spin-dependent scattering, and magnon scattering at the interface or in the bulk of the ferromagnet. While UMR in metallic bilayers has been studied extensively in very recent years, its magnitude is as small as 10$^-$$^5$, which is too small for practical applications. Here, we demonstrate a giant UMR effect in a heterostructure of BiSb topological insulator -- GaMnAs ferromagnetic semiconductor. We obtained a large UMR ratio of 1.1%, and found that this giant UMR is governed not by the giant magnetoresistance (GMR)-like spin-dependent scattering, but by magnon emission/absorption and strong spin-disorder scattering in the GaMnAs layer. Our results provide new insight into the complex physics of UMR, as well as a strategy for enhancing its magnitude for device applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا