ترغب بنشر مسار تعليمي؟ اضغط هنا

Bezout-like polynomial equations associated with dual univariate interpolating subdivision schemes

187   0   0.0 ( 0 )
 نشر من قبل Alberto Viscardi
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The algebraic characterization of dual univariate interpolating subdivision schemes is investigated. Specifically, we provide a constructive approach for finding dual univariate interpolating subdivision schemes based on the solutions of certain associated polynomial equations. The proposed approach also makes possible to identify conditions for the existence of the sought schemes.



قيم البحث

اقرأ أيضاً

A new class of univariate stationary interpolatory subdivision schemes of dual type is presented. As opposed to classical primal interpolatory schemes, these new schemes have masks with an even number of elements and are not step-wise interpolants. A complete algebraic characterization, which covers every arity, is given in terms of identities of trigonometric polynomials associated to the schemes. This characterization is based on a necessary condition for refinable functions to have prescribed values at the nodes of a uniform lattice, as a consequence of the Poisson summation formula. A strategy for the construction is then showed, alongside meaningful examples for applications that have comparable or even superior properties, in terms of regularity, length of the support and/or polynomial reproduction, with respect to the primal counterparts.
In this paper, we study how to quickly compute the <-minimal monomial interpolating basis for a multivariate polynomial interpolation problem. We address the notion of reverse reduced basis of linearly independent polynomials and design an algorithm for it. Based on the notion, for any monomial ordering we present a new method to read off the <-minimal monomial interpolating basis from monomials appearing in the polynomials representing the interpolation conditions.
78 - N. Loy , M. Zanella 2019
In this work we consider an extension of a recently proposed structure preserving numerical scheme for nonlinear Fokker-Planck-type equations to the case of nonconstant full diffusion matrices. While in existing works the schemes are formulated in a one-dimensional setting, here we consider exclusively the two-dimensional case. We prove that the proposed schemes preserve fundamental structural properties like nonnegativity of the solution without restriction on the size of the mesh and entropy dissipation. Moreover, all the methods presented here are at least second order accurate in the transient regimes and arbitrarily high order for large times in the hypothesis in which the flux vanishes at the stationary state. Suitable numerical tests will confirm the theoretical results.
125 - Yu Cao , Jianfeng Lu 2021
We study a family of structure-preserving deterministic numerical schemes for Lindblad equations, and carry out detailed error analysis and absolute stability analysis. Both error and absolute stability analysis are validated by numerical examples.
The long-standing problem of minimal projections is addressed from a computational point of view. Techniques to determine bounds on the projection constants of univariate polynomial spaces are presented. The upper bound, produced by a linear program, and the lower bound, produced by a semidefinite program exploiting the method of moments, are often close enough to deduce the projection constant with reasonable accuracy. The implementation of these programs makes it possible to find the projection constant of several three-dimensional spaces with five digits of accuracy, as well as the projection constants of the spaces of cubic, quartic, and quintic polynomials with four digits of accuracy. Beliefs about uniqueness and shape-preservation of minimal projections are contested along the way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا