ترغب بنشر مسار تعليمي؟ اضغط هنا

Conditions for Regional Frequency Stability in Power System Scheduling -- Part II: Application to Unit Commitment

80   0   0.0 ( 0 )
 نشر من قبل Luis Badesa
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In Part I of this paper we have introduced the closed-form conditions for guaranteeing regional frequency stability in a power system. Here we propose a methodology to represent these conditions in the form of linear constraints and demonstrate their applicability by implementing them in a generation-scheduling model. This model simultaneously optimises energy production and ancillary services for maintaining frequency stability in the event of a generation outage, by solving a frequency-secured Stochastic Unit Commitment (SUC). We consider the Great Britain system, characterised by two regions that create a non-uniform distribution of inertia: England in the South, where most of the load is located, and Scotland in the North, containing significant wind resources. Through several case studies, it is shown that inertia and frequency response cannot be considered as system-wide magnitudes in power systems that exhibit inter-area oscillations in frequency, as their location in a particular region is key to guarantee stability. In addition, securing against a medium-sized loss in the low-inertia region proves to cause significant wind curtailment, which could be alleviated through reinforced transmission corridors. In this context, the proposed constraints allow to find the optimal volume of ancillary services to be procured in each region.

قيم البحث

اقرأ أيضاً

This paper considers the phenomenon of distinct regional frequencies recently observed in some power systems. First, a reduced-order mathematical model describing this behaviour is developed. Then, techniques to solve the model are discussed, demonst rating that the post-fault frequency evolution in any given region is equal to the frequency evolution of the Centre Of Inertia plus certain inter-area oscillations. This finding leads to the deduction of conditions for guaranteeing frequency stability in all regions of a power system, a deduction performed using a mixed analytical-numerical approach that combines mathematical analysis with regression methods on simulation samples. The proposed stability conditions are linear inequalities that can be implemented in any optimisation routine allowing the co-optimisation of all existing ancillary services for frequency support: inertia, multi-speed frequency response, load damping and an optimised largest power infeed. This is the first reported mathematical framework with explicit conditions to maintain frequency stability in a power system exhibiting inter-area oscillations in frequency.
Massive adoptions of combined heat and power (CHP) units necessitate the coordinated operation of power system and district heating system (DHS). Exploiting the reconfigurable property of district heating networks (DHNs) provides a cost-effective sol ution to enhance the flexibility of the power system by redistributing heat loads in DHS. In this paper, a unit commitment considering combined electricity and reconfigurable heating network (UC-CERHN) is proposed to coordinate the day-ahead scheduling of power system and DHS. The DHS is formulated as a nonlinear and mixed-integer model with considering the reconfigurable DHN. Also, an auxiliary energy flow variable is introduced in the formed DHS model to make the commitment problem tractable, where the computational burdens are significantly reduced. Extensive case studies are presented to validate the effectiveness of the approximated model and illustrate the potential benefits of the proposed method with respect to congestion management and wind power accommodation. (Corresponding author:Hongbin Sun)
This paper treats an optimal scheduling problem of control nodes in networked systems. We newly introduce both the L0 and l0 constraints on control inputs to extract a time-varying small number of effective control nodes. As the cost function, we ado pt the trace of the controllability Gramian to reduce the required control energy. Since the formulated optimization problem is combinatorial, we introduce a convex relaxation problem for its computational tractability. After a reformulation of the problem into an optimal control problem to which Pontryagins maximum principle is applicable, we give a sufficient condition under which the relaxed problem gives a solution of the main problem. Finally, the proposed method is applied to a rebalancing problem of a mobility network.
113 - Weiming Xiang 2021
This paper deals with the stability analysis problem of discrete-time switched linear systems with ranged dwell time. A novel concept called L-switching-cycle is proposed, which contains sequences of multiple activation cycles satisfying the prescrib ed ranged dwell time constraint. Based on L-switching-cycle, two sufficient conditions are proposed to ensure the global uniform asymptotic stability of discrete-time switched linear systems. It is noted that two conditions are equivalent in stability analysis with the same $L$-switching-cycle. These two sufficient conditions can be viewed as generalizations of the clock-dependent Lyapunov and multiple Lyapunov function methods, respectively. Furthermore, it has been proven that the proposed L-switching-cycle can eventually achieve the nonconservativeness in stability analysis as long as a sufficiently long L-switching-cycle is adopted. A numerical example is provided to illustrate our theoretical results.
58 - Wei Ouyang , Yuanxin Wu 2021
This work deals with error models for trident quaternion framework proposed in the companion paper (Part I) and further uses them to investigate the odometer-aided static/in-motion inertial navigation attitude alignment for land vehicles. By lineariz ing the trident quaternion kinematic equation, the left and right trident quaternion error models are obtained, which are found to be equivalent to those derived from profound group affine. The two error models are used to design their corresponding extended Kalman filters (EKF), namely, the left-quaternion EKF (LQEKF) and the right-quaternion EKF (RQEKF). Simulations and field tests are conducted to evaluate their actual performances. Owing to the high estimation consistency, the L/RQEKF converge much faster in the static alignment than the traditional error model-based EKF, even under arbitrary large heading initialization. For the in-motion alignment, the L/RQEKF possess much larger convergence region than the traditional EKF does, although they still require the aid of attitude initialization so as to avoid large initial attitude errors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا