ﻻ يوجد ملخص باللغة العربية
Discontinuous Galerkin (DG) methods provide a means to obtain high-order accurate solutions in regions of smooth fluid flow while, with the aid of limiters, still resolving strong shocks. These and other properties make DG methods attractive for solving problems involving hydrodynamics; e.g., the core-collapse supernova problem. With that in mind we are developing a DG solver for the general relativistic, ideal hydrodynamics equations under a 3+1 decomposition of spacetime, assuming a conformally-flat approximation to general relativity. With the aid of limiters we verify the accuracy and robustness of our code with several difficult test-problems: a special relativistic Kelvin--Helmholtz instability problem, a two-dimensional special relativistic Riemann problem, and a one- and two-dimensional general relativistic standing accretion shock (SAS) problem. We find good agreement with published results, where available. We also establish sufficient resolution for the 1D SAS problem and find encouraging results regarding the standing accretion shock instability (SASI) in 2D.
This paper describes algorithms for non-relativistic hydrodynamics in the toolkit for high-order neutrino radiation hydrodynamics (thornado), which is being developed for multiphysics simulations of core-collapse supernovae (CCSNe) and related proble
We present the recent development of hybridizable and embedded discontinuous Galerkin (DG) methods for wave propagation problems in fluids, solids, and electromagnetism. In each of these areas, we describe the methods, discuss their main features, di
In this paper, we construct an efficient numerical scheme for full-potential electronic structure calculations of periodic systems. In this scheme, the computational domain is decomposed into a set of atomic spheres and an interstitial region, and di
In this article, several discontinuous Petrov-Galerkin (DPG) methods with perfectly matched layers (PMLs) are derived along with their quasi-optimal graph test norms. Ultimately, two different complex coordinate stretching strategies are considered i
The numerical solution of relativistic hydrodynamics equations in conservative form requires root-finding algorithms that invert the conservative-to-primitive variables map. These algorithms employ the equation of state of the fluid and can be comput