ﻻ يوجد ملخص باللغة العربية
We propose a novel joint activity, channel, and data estimation (JACDE) scheme for cell-free multiple-input multiple-output (MIMO) systems compliant with fifth-generation (5G) new radio (NR) orthogonal frequency-division multiplexing (OFDM) signaling. The contribution aims to allow significant overhead reduction of cell-free MIMO systems by enabling grant-free access, while maintaining moderate throughput per user. To that end, we extend the conventional MIMO OFDM protocol so as to incorporate activity detection capability without resorting to spreading informative data symbols, in contrast with related work which typically relies on signal spreading. Our method leverages a Bayesian message passing scheme based on Gaussian approximation, which jointly performs active user detection (AUD), channel estimation (CE), and multi-user detection (MUD), incorporating also a well-structured low-coherent pilot design based on frame theory, which mitigates pilot contamination, and finally complemented with a detector empowered by bilinear message passing. The efficacy of the resulting JACDE-based grant-free access scheme without spreading data sequences is demonstrated by simulation results, which are shown to significantly outperform the current state-of-the-art and approach the performance of an idealized (genie-aided) scheme in which user activity and channel coefficients are perfectly known.
We consider Internet of Things (IoT) organized on the principles of cell-free massive MIMO. Since the number of things is very large, orthogonal pilots cannot be assigned to all of them even if the things are stationary. This results in an unavoidabl
5G New Radio (NR) is expected to support new ultra-reliable low-latency communication (URLLC) service targeting at supporting the small packets transmissions with very stringent latency and reliability requirements. Current Long Term Evolution (LTE)
Reconfigurable intelligent surfaces (RISs) have been recently considered as one of the emerging technologies for future communication systems by leveraging the tuning capabilities of their reflecting elements. In this paper, we investigate the potent
In the envisioned 5G, uplink grant-free multiple access will become the enabler of ultra-reliable low-latency communications (URLLC) services. By removing the forward scheduling request (SR) and backward scheduling grant (SG), pilot-based channel est
In this paper we propose a novel millimeter wave (mmW) multiple access method that exploits unique frequency dependent beamforming capabilities of True Time Delay (TTD) array architecture. The proposed protocol combines a contentionbased grant-free a