ﻻ يوجد ملخص باللغة العربية
We consider a dynamic ErdH{o}s-Renyi random graph (ERRG) on $n$ vertices in which each edge switches on at rate $lambda$ and switches off at rate $mu$, independently of other edges. The focus is on the analysis of the evolution of the associated empirical graphon in the limit as $ntoinfty$. Our main result is a large deviation principle (LDP) for the sample path of the empirical graphon observed until a fixed time horizon. The rate is $binom{n}{2}$, the rate function is a specific action integral on the space of graphon trajectories. We apply the LDP to identify (i) the most likely path that starting from a constant graphon creates a graphon with an atypically large density of $d$-regular subgraphs, and (ii) the mostly likely path between two given graphons. It turns out that bifurcations may occur in the solutions of associated variational problems.
We consider an inhomogeneous ErdH{o}s-Renyi random graph $G_N$ with vertex set $[N] = {1,dots,N}$ for which the pair of vertices $i,j in [N]$, $i eq j$, is connected by an edge with probability $r(tfrac{i}{N},tfrac{j}{N})$, independently of other pai
We develop a quantitative large deviations theory for random Bernoulli tensors. The large deviation principles rest on a decomposition theorem for arbitrary tensors outside a set of tiny measure, in terms of a novel family of norms generalizing the c
We consider the statistics of the extreme eigenvalues of sparse random matrices, a class of random matrices that includes the normalized adjacency matrices of the ErdH{o}s-Renyi graph $G(N,p)$. Tracy-Widom fluctuations of the extreme eigenvalues for
We initiate a study of large deviations for block model random graphs in the dense regime. Following Chatterjee-Varadhan(2011), we establish an LDP for dense block models, viewed as random graphons. As an application of our result, we study upper tai
A wide array of random graph models have been postulated to understand properties of observed networks. Typically these models have a parameter $t$ and a critical time $t_c$ when a giant component emerges. It is conjectured that for a large class of