ترغب بنشر مسار تعليمي؟ اضغط هنا

Novel perspectives gained from new reconstruction algorithms

83   0   0.0 ( 0 )
 نشر من قبل Luke Pratley
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since the 1970s, much of traditional interferometric imaging has been built around variations of the CLEAN algorithm, in both terminology, methodology, and algorithm development. Recent developments in applying new algorithms from convex optimization to interferometry has allowed old concepts to be viewed from a new perspective, ranging from image restoration to the development of computationally distributed algorithms. We present how this has ultimately led the authors to new perspectives in wide-field imaging, allowing for the first full individual non-coplanar corrections applied during imaging over extremely wide-fields of view for the Murchison Widefield Array (MWA) telescope. Furthermore, this same mathematical framework has provided a novel understanding of wide-band polarimetry at low frequencies, where instrumental channel depolarization can be corrected through the new $deltalambda^2$-projection algorithm. This is a demonstration that new algorithm development outside of traditional radio astronomy is valuable for the new theoretical and practical perspectives gained. These perspectives are timely with the next generation of radio telescopes coming online.

قيم البحث

اقرأ أيضاً

In this contribution I present results achieved recently in the field of the OT forecast that push further the limit of the accuracy of the OT forecasts and open to new perspectives in this field.
The reconstruction of interaction vertices can be decomposed into a pattern recognition problem (``vertex finding) and a statistical problem (``vertex fitting). We briefly review classical methods. We introduce novel approaches and motivate them in t he framework of high-luminosity experiments like at the LHC. We then show comparisons with the classical methods in relevant physics channels
97 - Eric Gendron 2006
Context. The knowledge of the point-spread function compensated by adaptive optics is of prime importance in several image restoration techniques such as deconvolution and astrometric/photometric algorithms. Wavefront-related data from the adaptive o ptics real-time computer can be used to accurately estimate the point-spread function in adaptive optics observations. The only point-spread function reconstruction algorithm implemented on astronomical adaptive optics system makes use of particular functions, named $U_{ij}$. These $U_{ij}$ functions are derived from the mirror modes, and their number is proportional to the square number of these mirror modes. Aims. We present here two new algorithms for point-spread function reconstruction that aim at suppressing the use of these $U_{ij}$ functions to avoid the storage of a large amount of data and to shorten the computation time of this PSF reconstruction. Methods. Both algorithms take advantage of the eigen decomposition of the residual parallel phase covariance matrix. In the first algorithm, the use of a basis in which the latter matrix is diagonal reduces the number of $U_{ij}$ functions to the number of mirror modes. In the second algorithm, this eigen decomposition is used to compute phase screens that follow the same statistics as the residual parallel phase covariance matrix, and thus suppress the need for these $U_{ij}$ functions. Results. Our algorithms dramatically reduce the number of $U_{ij}$ functions to be computed for the point-spread function reconstruction. Adaptive optics simulations show the good accuracy of both algorithms to reconstruct the point-spread function.
The servo control algorithms of the TNG, developed in the nineties, have been working for more than 20 years with no major updates. The original hardware was based on a VME-bus based platform running a real time operating system, a rather popular cho ice for similar applications at the time. Recently, the obsolescence of the hardware and the lack of spares pushed the observatory towards a complete replacement of the electronics that is now being implemented in steps, respecting the basic requirement of never stopping the observatory night operations. Within the framework of this major hardware work, we are taking the opportunity to review and update the existing control schemes. This servo control update, crucial for the telescope performance, envisages a new study from scratch of the controlled plant, including a re-identification of the main axes transfer functions and a re-design of the control filters in the two nested position and speed loops. The ongoing work is described, including preliminary results in the case study of the azimuth axis and our plans for possible further improvements.
185 - Stanley J. Brodsky 2015
Light-Front Quantization -- Diracs Front Form -- provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined f rom the hadronic LFWFs. One obtains new insights into the hadronic mass scale, the hadronic spectrum, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons. I also discuss evidence that the antishadowing of nuclear structure functions is non-universal, i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with the momentum and other sum rules for the nuclear parton distribution functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا