ﻻ يوجد ملخص باللغة العربية
We systematically analyze the tensorial structure of the lattice pressure tensors for a class of multi-phase lattice Boltzmann models (LBM) with multi-range interactions. Due to lattice discrete effects, we show that the built-in isotropy properties of the lattice interaction forces are not necessarily mirrored in the corresponding lattice pressure tensor. This finding opens a different perspective for constructing forcing schemes, achieving the desired isotropy in the lattice pressure tensors via a suitable choice of multi-range potentials. As an immediate application, the obtained LBM forcing schemes are tested via numerical simulations of non-ideal equilibrium interfaces and are shown to yield weaker and less spatially extended spurious currents with respect to forcing schemes obtained by forcing isotropy requirements only. From a general perspective, the proposed analysis yields an approach for implementing forcing symmetries, never explored so far in the framework of the Shan-Chen method for LBM. We argue this will be beneficial for future studies of non-ideal interfaces.
We demonstrate that the multi-phase lattice Boltzmann method (LBM) yields a curvature dependent surface tension $sigma$ by means of three-dimensional hydrostatic droplets/bubbles simulations. Such curvature dependence is routinely characterized, at t
Fluid motion driven by thermal effects, such as that due to buoyancy in differentially heated three-dimensional (3D) enclosures, arise in several natural settings and engineering applications. It is represented by the solutions of the Navier-Stokes e
We derive a mobility tensor for many cylindrical objects embedded in a viscous sheet. This tensor guarantees a positive dissipation rate for any configuration of particles and forces, analogously to the Rotne-Prager-Yamakawa tensor for spherical part
The entropic pressure in the vicinity of a two dimensional square lattice polygon is examined as a model of the entropic pressure near a planar ring polymer. The scaling of the pressure as a function of distance from the polygon and length of the polygon is determined and tested numerically.
We study the classical Toda lattice with domain wall initial conditions, for which left and right half lattice are in thermal equilibrium but with distinct parameters of pressure, mean velocity, and temperature. In the hydrodynamic regime the respect