ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure and Isotropy of Lattice Pressure Tensors for Multi-range Potentials

113   0   0.0 ( 0 )
 نشر من قبل Matteo Lulli Dr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We systematically analyze the tensorial structure of the lattice pressure tensors for a class of multi-phase lattice Boltzmann models (LBM) with multi-range interactions. Due to lattice discrete effects, we show that the built-in isotropy properties of the lattice interaction forces are not necessarily mirrored in the corresponding lattice pressure tensor. This finding opens a different perspective for constructing forcing schemes, achieving the desired isotropy in the lattice pressure tensors via a suitable choice of multi-range potentials. As an immediate application, the obtained LBM forcing schemes are tested via numerical simulations of non-ideal equilibrium interfaces and are shown to yield weaker and less spatially extended spurious currents with respect to forcing schemes obtained by forcing isotropy requirements only. From a general perspective, the proposed analysis yields an approach for implementing forcing symmetries, never explored so far in the framework of the Shan-Chen method for LBM. We argue this will be beneficial for future studies of non-ideal interfaces.



قيم البحث

اقرأ أيضاً

We demonstrate that the multi-phase lattice Boltzmann method (LBM) yields a curvature dependent surface tension $sigma$ by means of three-dimensional hydrostatic droplets/bubbles simulations. Such curvature dependence is routinely characterized, at t he first order, by the so-called {it Tolman length} $delta$. LBM allows to precisely compute $sigma$ at the surface of tension $R_s$, i.e. as a function of the droplet size, and determine the first order correction. The corresponding values of $delta$ display universality in temperature for different equations of state, following a power-law scaling near the critical point. The Tolman length has been studied so far mainly via computationally demanding molecular dynamics (MD) simulations or by means of density functional theory (DFT) approaches. It has proved pivotal in extending the classical nucleation theory and is expected to be paramount in understanding cavitation phenomena. The present results open a new hydrodynamic-compliant mesoscale arena, in which the fundamental role of the Tolman length, alongside real-world applications to cavitation phenomena, can be effectively tackled.
Fluid motion driven by thermal effects, such as that due to buoyancy in differentially heated three-dimensional (3D) enclosures, arise in several natural settings and engineering applications. It is represented by the solutions of the Navier-Stokes e quations (NSE) in conjunction with the thermal energy transport equation represented as a convection-diffusion equation (CDE) for the temperature field. In this study, we develop new 3D lattice Boltzmann (LB) methods based on central moments and using multiple relaxation times for the three-dimensional, fifteen velocity (D3Q15) lattice, as well as it subset, i.e. the three-dimensional, seven velocity (D3Q7) lattice to solve the 3D CDE for the temperature field in a double distribution function framework. Their collision operators lead to a cascaded structure involving higher order terms resulting in improved stability. In this approach, the fluid motion is solved by another 3D cascaded LB model from prior work. Owing to the differences in the number of collision invariants to represent the dynamics of flow and the transport of the temperature field, the structure of the collision operator for the 3D cascaded LB formulation for the CDE is found to be markedly different from that for the NSE. The new 3D cascaded (LB) models for thermal convective flows are validated for natural convection of air driven thermally on two vertically opposite faces in a cubic cavity enclosure at different Rayleigh numbers against prior numerical benchmark solutions. Results show good quantitative agreement of the profiles of the flow and thermal fields, and the magnitudes of the peak convection velocities as well as the heat transfer rates given in terms of the Nusselt number.
We derive a mobility tensor for many cylindrical objects embedded in a viscous sheet. This tensor guarantees a positive dissipation rate for any configuration of particles and forces, analogously to the Rotne-Prager-Yamakawa tensor for spherical part icles in a three-dimensional viscous fluid. We test our result for a ring of radially driven particles, demonstrating the positive-definite property at all particle densities. The derived tensor can be utilized in Brownian Dynamics simulations with hydrodynamic interactions for such systems as proteins in biomembranes and inclusions in free-standing liquid films.
The entropic pressure in the vicinity of a two dimensional square lattice polygon is examined as a model of the entropic pressure near a planar ring polymer. The scaling of the pressure as a function of distance from the polygon and length of the polygon is determined and tested numerically.
We study the classical Toda lattice with domain wall initial conditions, for which left and right half lattice are in thermal equilibrium but with distinct parameters of pressure, mean velocity, and temperature. In the hydrodynamic regime the respect ive space-time profiles scale ballisticly. The particular case of interest is a jump from low to high pressure at uniform temperature and zero mean velocity. Thereby the scaling function for the average stretch (also free volume) is forced to change sign. By direct inspection, the hydrodynamic equations for the Toda lattice seem to be singular at zero stretch. In our contribution we report on numerical solutions and convincingly establish that nevertheless the self-similar solution exhibits smooth behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا