ترغب بنشر مسار تعليمي؟ اضغط هنا

Einstein@Home all-sky search for continuous gravitational waves in LIGO O2 public data

157   0   0.0 ( 0 )
 نشر من قبل M. Alessandra Papa
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We conduct an all-sky search for continuous gravitational waves in the LIGO O2 data from the Hanford and Livingston detectors. We search for nearly-monochromatic signals with frequency between 20.0 Hz and 585.15 Hz and spin-down between -2.6e-9 Hz/s and 2.6e-10 Hz/s. We deploy the search on the Einstein@Home volunteer-computing project and follow-up the waveforms associated with the most significant results with eight further search-stages, reaching the best sensitivity ever achieved by an all-sky survey up to 500 Hz. Six of the inspected waveforms pass all the stages but they are all associated with hardware-injections, which are fake signals simulated at the LIGO detector for validation purposes. We recover all these fake signals with consistent parameters. No other waveform survives, so we find no evidence of a continuous gravitational wave signal at the detectability level of our search. We constrain the h0 amplitude of continuous gravitational waves at the detector as a function of the signal frequency, in half-Hz bins. The most constraining upper limit at 163.0 Hz is h0 = 1.3e25, at the 90% confidence level. Our results exclude neutron stars rotating faster than 5 ms with equatorial ellipticities larger than 1e-7 closer than 100 pc. These are deformations that neutron star crusts could easily support, according to some models.



قيم البحث

اقرأ أيضاً

We present results of an all-sky search for continuous gravitational waves (CWs), which can be produced by fast-spinning neutron stars with an asymmetry around their rotation axis, using data from the second observing run of the Advanced LIGO detecto rs. We employ three different semi-coherent methods ($textit{FrequencyHough}$, $textit{SkyHough}$, and $textit{Time-Domain $mathcal{F}$-statistic}$) to search in a gravitational-wave frequency band from 20 to 1922 Hz and a first frequency derivative from $-1times10^{-8}$ to $2times10^{-9}$ Hz/s. None of these searches has found clear evidence for a CW signal, so we present upper limits on the gravitational-wave strain amplitude $h_0$ (the lowest upper limit on $h_0$ is $1.7times10^{-25}$ in the 123-124 Hz region) and discuss the astrophysical implications of this result. This is the most sensitive search ever performed over the broad range of parameters explored in this study.
We present the results of a search in LIGO O2 public data for continuous gravitational waves from the neutron star in the low-mass X-ray binary Scorpius X-1. We search for signals with $approx$ constant frequency in the range 40-180 Hz. Thanks to the efficiency of our search pipeline we can use a long coherence time and achieve unprecedented sensitivity, significantly improving on existing results. This is the first search that has been able to probe gravitational wave amplitudes that could balance the accretion torque at the neutron star radius. Our search excludes emission at this level between 67.5 Hz and 131.5 Hz, for an inclination angle $44^circ pm 6^circ$ derived from radio observations (Fomalont et al. 2001), and assuming that the spin axis is perpendicular to the orbital plane. If the torque arm is $approx $ 26 km -- a conservative estimate of the alfven radius -- our results are more constraining than the indirect limit across the band. This allows us to exclude certain mass-radius combinations and to place upper limits on the strength of the stars magnetic field. We also correct a mistake that appears in the literature in the equation that gives the gravitational wave amplitude at the torque balance (Abbott et al. 2017b, 2019a) and we re-interpret the associated latest LIGO/Virgo results in light of this.
We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7 [1/$sqrt{{textrm{Hz}}}$]. At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper limits of $1.8 times 10^{-25}$. At the low end of our frequency range, 20 Hz, we achieve upper limits of $3.9 times 10^{-24}$. At 55 Hz we can exclude sources with ellipticities greater than $10^{-5}$ within 100 pc of Earth with fiducial value of the principal moment of inertia of $10^{38} textrm{kg m}^2$.
165 - J. Aasi , J. Abadie , B. P. Abbott 2012
This paper presents results of an all-sky searches for periodic gravitational waves in the frequency range [50, 1190] Hz and with frequency derivative ranges of [-2 x 10^-9, 1.1 x 10^-10] Hz/s for the fifth LIGO science run (S5). The novelty of the s earch lies in the use of a non-coherent technique based on the Hough-transform to combine the information from coherent searches on timescales of about one day. Because these searches are very computationally intensive, they have been deployed on the Einstein@Home distributed computing project infrastructure. The search presented here is about a factor 3 more sensitive than the previous Einstein@Home search in early S5 LIGO data. The post-processing has left us with eight surviving candidates. We show that deeper follow-up studies rule each of them out. Hence, since no statistically significant gravitational wave signals have been detected, we report upper limits on the intrinsic gravitational wave amplitude h0. For example, in the 0.5 Hz-wide band at 152.5 Hz, we can exclude the presence of signals with h0 greater than 7.6 x 10^-25 with a 90% confidence level.
We report results of an all-sky search for periodic gravitational waves with frequency between 50 and 510 Hz from isolated compact objects, i.e. neutron stars. A new hierarchical multi-stage approach is taken, supported by the computing power of the Einstein@Home project, allowing to probe more deeply than ever before. 16 million sub-threshold candidates from the initial search [LVC,arXiv:1606.09619] are followed up in three stages. None of those candidates is consistent with an isolated gravitational wave emitter, and 90% confidence level upper limits are placed on the amplitudes of continuous waves from the target population. Between 170.5 and 171 Hz we set the most constraining 90% confidence upper limit on the strain amplitude h0 at 4.3x10-25 , while at the high end of our frequency range we achieve an upper limit of 7.6x10-25. These are the most constraining all-sky upper limits to date and constrain the ellipticity of rotating compact objects emitting at 300 Hz at a distance D to less than 6x10-7 [d/100pc].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا