ﻻ يوجد ملخص باللغة العربية
We propose a set of iterative regularization algorithms for the TV-Stokes model to restore images from noisy images with Gaussian noise. These are some extensions of the iterative regularization algorithm proposed for the classical Rudin-Osher-Fatemi (ROF) model for image reconstruction, a single step model involving a scalar field smoothing, to the TV-Stokes model for image reconstruction, a two steps model involving a vector field smoothing in the first and a scalar field smoothing in the second. The iterative regularization algorithms proposed here are Richardsons iteration like. We have experimental results that show improvement over the original method in the quality of the restored image. Convergence analysis and numerical experiments are presented.
The paper presents a fully coupled TV-Stokes model, and propose an algorithm based on alternating minimization of the objective functional whose first iteration is exactly the modified TV-Stokes model proposed earlier. The model is a generalization o
A complete multidimential TV-Stokes model is proposed based on smoothing a gradient field in the first step and reconstruction of the multidimensional image from the gradient field. It is the correct extension of the original two dimensional TV-Stoke
Signals and images with discontinuities appear in many problems in such diverse areas as biology, medicine, mechanics, and electrical engineering. The concrete data are often discrete, indirect and noisy measurements of some quantities describing the
We consider $L^1$-TV regularization of univariate signals with values on the real line or on the unit circle. While the real data space leads to a convex optimization problem, the problem is non-convex for circle-valued data. In this paper, we derive
In this paper, we consider the sparse regularization of manifold-valued data with respect to an interpolatory wavelet/multiscale transform. We propose and study variational models for this task and provide results on their well-posedness. We present