ﻻ يوجد ملخص باللغة العربية
We present a tube model for the Brownian dynamics of associating polymers in extensional flow. In linear response, the model confirms the analytical predictions for the sticky diffusivity by Leibler- Rubinstein-Colby theory. Although a single-mode DEMG approximation accurately describes the transient stretching of the polymers above a sticky Weissenberg number (product of the strain rate with the sticky-Rouse time), the pre-averaged model fails to capture a remarkable development of a power-law distribution of stretch in steady-state extensional flow: while the mean stretch is finite, the fluctuations in stretch may diverge. We present an analytical model that shows how strong stochastic forcing drive the long tail of the distribution, gives rise to rare events of reaching a threshold stretch and constitutes a framework within which nucleation rates of flow-induced crystallization may understood in systems of associating polymers under flow. The model also exemplifies a wide class of driven systems possessing strong, and scaling, fluctuations.
The sliding of non-Newtonian drops down planar surfaces results in a complex, entangled balance between interfacial forces and non linear viscous dissipation, which has been scarcely inspected. In particular, a detailed understanding of the role play
Molecular dynamics simulations confirm recent extensional flow experiments showing ring polymer melts exhibit strong extension-rate thickening of the viscosity at Weissenberg numbers $Wi<<1$. Thickening coincides with the extreme elongation of a mino
Based on discrete element method simulations, we propose a new form of the constitution equation for granular flows independent of packing fraction. Rescaling the stress ratio $mu$ by a power of dimensionless temperature $Theta$ makes the data from a
Although the behavior of fluid-filled vesicles in steady flows has been extensively studied, far less is understood regarding the shape dynamics of vesicles in time-dependent oscillatory flows. Here, we investigate the nonlinear dynamics of vesicles
The tumbling dynamics of individual polymers in semidilute solution is studied by large-scale non-equilibrium mesoscale hydrodynamic simulations. We find that the tumbling time is equal to the non-equilibrium relaxation time of the polymer end-to-end