ﻻ يوجد ملخص باللغة العربية
In many real-world problems of real-time monitoring high-dimensional streaming data, one wants to detect an undesired event or change quickly once it occurs, but under the sampling control constraint in the sense that one might be able to only observe or use selected components data for decision-making per time step in the resource-constrained environments. In this paper, we propose to incorporate multi-armed bandit approaches into sequential change-point detection to develop an efficient bandit change-point detection algorithm. Our proposed algorithm, termed Thompson-Sampling-Shiryaev-Roberts-Pollak (TSSRP), consists of two policies per time step: the adaptive sampling policy applies the Thompson Sampling algorithm to balance between exploration for acquiring long-term knowledge and exploitation for immediate reward gain, and the statistical decision policy fuses the local Shiryaev-Roberts-Pollak statistics to determine whether to raise a global alarm by sum shrinkage techniques. Extensive numerical simulations and case studies demonstrate the statistical and computational efficiency of our proposed TSSRP algorithm.
Robust real-time monitoring of high-dimensional data streams has many important real-world applications such as industrial quality control, signal detection, biosurveillance, but unfortunately it is highly non-trivial to develop efficient schemes due
Structural breaks have been commonly seen in applications. Specifically for detection of change points in time, research gap still remains on the setting in ultra high dimension, where the covariates may bear spurious correlations. In this paper, we
Topological Data Analysis (TDA) is a rapidly growing field, which studies methods for learning underlying topological structures present in complex data representations. TDA methods have found recent success in extracting useful geometric structures
Because of the curse-of-dimensionality, high-dimensional processes present challenges to traditional multivariate statistical process monitoring (SPM) techniques. In addition, the unknown underlying distribution and complicated dependency among varia
This manuscript makes two contributions to the field of change-point detection. In a general change-point setting, we provide a generic algorithm for aggregating local homogeneity tests into an estimator of change-points in a time series. Interesting