ﻻ يوجد ملخص باللغة العربية
Using the tip of a scanning probe microscope as a local electrostatic gate gives access to real space information on electrostatics as well as charge transport at the nanoscale, provided that the tip-induced electrostatic potential is well known. Here, we focus on the accurate characterization of the tip potential, in a regime where the tip locally depletes a two-dimensional electron gas (2DEG) hosted in a semiconductor heterostructure. Scanning the tip in the vicinity of a quantum point contact defined in the 2DEG, we observe Fabry-Perot interference fringes at low temperature in maps of the device conductance. We exploit the evolution of these fringes with the tip voltage to measure the change in depletion radius by electron interferometry. We find that a semi-classical finite-element self-consistent model taking into account the conical shape of the tip reaches a faithful correspondence with the experimental data.
We present a detailed experimental study on the electrostatic interaction between a quantum dot and the metallic tip of a scanning force microscope. Our method allowed us to quantitatively map the tip-induced potential and to determine the spatial de
Due to their high energy, hot electrons in quantum Hall edge states can be considered as single particles that have the potential to be used for quantum optics-like experiments. Unlike photons, however, electrons typically undergo scattering processe
Cryogenic low noise amplifiers based on high electron mobility transistors (HEMTs) are widely used in applications such as radio astronomy, deep space communications, and quantum computing, and the physical mechanisms governing the microwave noise fi
We have developed a novel method for crystalline hydrogenation of graphene on the nanoscale. Molecular hydrogen was physisorbed at 5 K onto pristine graphene islands grown on Cu(111) in ultrahigh vacuum. Field emission local to the tip of a scanning
It is widely believed that topological superconductivity, a hitherto elusive phase of quantum matter, can be achieved by inducing superconductivity in topological materials. In search of such topological superconductors, certain topological insulator