ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic correlations in the semiconducting half-Heusler compound FeVSb

87   0   0.0 ( 0 )
 نشر من قبل Jason Kawasaki
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electronic correlations are crucial to the low energy physics of metallic systems with localized $d$ and $f$ states; however, their effect on band insulators and semiconductors is typically negligible. Here, we measure the electronic structure of the half-Heusler compound FeVSb, a band insulator with filled shell configuration of 18 valence electrons per formula unit ($s^2 p^6 d^{10}$). Angle-resolved photoemission spectroscopy (ARPES) reveals a mass renormalization of $m^{*}/m_{bare}= 1.4$, where $m^{*}$ is the measured effective mass and $m_{bare}$ is the mass from density functional theory (DFT) calculations with no added on-site Coulomb repulsion. Our measurements are in quantitative agreement with dynamical mean field theory (DMFT) calculations, highlighting the many-body origin of the mass renormalization. This mass renormalization lies in dramatic contrast to other filled shell intermetallics, including the thermoelectric materials CoTiSb and NiTiSn; and has a similar origin to that in FeSi, where Hunds coupling induced fluctuations across the gap can explain a dynamical self-energy and correlations. Our work calls for a re-thinking of the role of correlations and Hunds coupling in intermetallic band insulators.

قيم البحث

اقرأ أيضاً

The electronic, magnetic, thermoelectric, and topological properties of Heusler compounds (composition $XYZ$ or $X_2 YZ$) are highly sensitive to stoichiometry and defects. Here we establish the existence and experimentally map the bounds of a textit {semi} adsorption-controlled growth window for semiconducting half Heusler FeVSb films, grown by molecular beam epitaxy (MBE). We show that due to the high volatility of Sb, the Sb stoichiometry is self-limiting for a finite range of growth temperatures and Sb fluxes, similar to the growth of III-V semiconductors such as GaSb and GaAs. Films grown within this window are nearly structurally indistinguishable by X-ray diffraction (XRD) and reflection high energy electron diffraction (RHEED). The highest electron mobility and lowest background carrier density are obtained towards the Sb-rich bound of the window, suggesting that Sb-vacancies may be a common defect. Similar textit{semi} adsorption-controlled bounds are expected for other ternary intermetallics that contain a volatile species $Z=${Sb, As, Bi}, e.g., CoTiSb, LuPtSb, GdPtBi, and NiMnSb. However, outstanding challenges remain in controlling the remaining Fe/V ($X/Y$) transition metal stoichiometry.
90 - Q. Y. Xue , H. J. Liu , D. D. Fan 2016
The electronic and transport properties of the half-Heusler compound LaPtSb are investigated by performing first-principles calculations combined with semi-classical Boltzmann theory and deformation potential theory. Compared with many typical half-H eusler compounds, the LaPtSb exhibits obviously larger power factor at room temperature, especially for the n-type system. Together with the very low lattice thermal conductivity, the thermoelectric figure of merit (ZT) of LaPtSb can be optimized to a record high value of 2.2 by fine tuning the carrier concentration.
We explore the structural, electronic, mechanical and thermoelectric properties of a new half Heusler compound, HfPtPb which is all metallic heavy element and has been recently been proposed to be stable [Nature Chem 7 (2015) 308]. In the present wor k, we employ density functional theory and semiclassical Boltzmann transport equations with constant relaxation time approximation. The mechanical properties such as Shear modulus, Young modulus, elastic constants, Poisson ratio, and shear anisotropy factor are investigated. The elastic and phonon properties reveal that this compound is mechanically and dynamically stable. Pugh and Frantsevich ratio demonstrates the ductile behavior and Shear anisotropic factor reflects the anisotropic nature of HfPtPb. The calculation of band structure predicts that this compound is semiconductor in nature with band gap 0.86 eV. The thermoelectric transport parameters such as Seebeck coefficient, electrical conductivity, and electronic thermal conductivity and lattice thermal conductivity have been calculated as a function of temperature. The highest value of Seebeck coefficient is obtained for n-type doping at optimal carrier concentration. We predict the maximum value of the figure of merit 0.25 at 1000 K. Our investigation suggests that this material is n-type semiconductor.
Magnetic lanthanide half-Heuslers ($R$PtBi; $R$ being the lanthanide) represent an attractive subgroup of the Heusler family and have been identified as ideal candidates for time reversal symmetry breaking topological Weyl semimetals. In this paper, we present the detailed analysis of the magnetotransport properties of frustrated antiferromagnet TbPtBi. This material shows large, non-saturating magnetoresistance (MR) with unusual magnetic field dependence. The MR of TbPtBi is significantly anisotropic with respect to the magnetic field, applied along different crystallographic directions and indicates the anisotropic nature of the Fermi surface. The chiral anomaly induced negative longitudinal magnetoresistance confirms the presence of Weyl fermions. At low temperature, Berry phase driven large anomalous Hall conductivity has been observed. The calculated anomalous Hall angle is the largest reported so far.
We have investigated the electronic and thermoelectric properties of half-Heusler alloys NiTZ (T = Sc, and Ti; Z = P, As, Sn, and Sb) having 18 valence electron. Calculations are performed by means of density functional theory and Boltzmann transport equation with constant relaxation time approximation, validated by NiTiSn. The chosen half-Heuslers are found to be an indirect band gap semiconductor, and the lattice thermal conductivity is comparable with the state-of-the-art thermoelectric materials. The estimated power factor for NiScP, NiScAs, and NiScSb reveals that their thermoelectric performance can be enhanced by appropriate doping rate. The value of ZT found for NiScP, NiScAs, and NiScSb are 0.46, 0.35, and 0.29, respectively at 1200 K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا