ترغب بنشر مسار تعليمي؟ اضغط هنا

Fractional antiferromagnetic skyrmion lattice induced by anisotropic couplings

239   0   0.0 ( 0 )
 نشر من قبل Shang Gao
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic skyrmions are topological solitons with a nanoscale winding spin texture that hold promise for spintronics applications. Until now, skyrmions have been observed in a variety of magnets that exhibit nearly parallel alignment for the neighbouring spins, but theoretically, skyrmions with anti-parallel neighbouring spins are also possible. The latter, antiferromagnetic skyrmions, may allow more flexible control compared to the conventional ferromagnetic skyrmions. Here, by combining neutron scattering and Monte Carlo simulations, we show that a fractional antiferromagnetic skyrmion lattice with an incipient meron character is stabilized in MnSc$_2$S$_4$ through anisotropic couplings. Our work demonstrates that the theoretically proposed antiferromagnetic skyrmions can be stabilized in real materials and represents an important step towards implementing the antiferromagnetic-skyrmion based spintronic devices.



قيم البحث

اقرأ أيضاً

We demonstrate a fast numerical method of theoretical studies of skyrmion lattice or spiral order in magnetic materials with Dzyaloshinsky-Moriya interaction. The method is based on the Fourier expansion of the magnetization combined with a minimizat ion of the free energy functional of the magnetic material in Fourier space, yielding the optimal configuration of the system for any given set of parameters. We employ a Lagrange multiplier technique in order to satisfy micromagnetic constraints. We apply this method to a system that exhibits, depending on the parameter choice, ferromagnetic, skyrmion lattice, or spiral (helical) order. Known critical fields corresponding to the helical-skyrmion as well as the skyrmion-ferromagnet phase transitions are reproduced with high precision. Using this numerical method we predict new types of excited (metastable) states of the skyrmion lattice, which may be stabilized by coupling the skyrmion lattice with a superconducting vortex lattice. The method can be readily adapted to other micromagnetic systems.
Majorana bound states are zero-energy states predicted to emerge in topological superconductors and intense efforts seeking a definitive proof of their observation are still ongoing. A standard route to realize them involves antagonistic orders: a su perconductor in proximity to a ferromagnet. Here we show this issue can be resolved using antiferromagnetic rather than ferromagnetic order. We propose to use a chain of antiferromagnetic skyrmions, in an otherwise collinear antiferromagnet, coupled to a bulk conventional superconductor as a novel platform capable of supporting Majorana bound states that are robust against disorder. Crucially, the collinear antiferromagnetic region neither suppresses superconductivity nor induces topological superconductivity, thus allowing for Majorana bound states localized at the ends of the chain. Our model introduces a new class of systems where topological superconductivity can be induced by editing antiferromagnetic textures rather than locally tuning material parameters, opening avenues for the conclusive observation of Majorana bound states.
We have investigated two-dimensional thermoelectric properties in transition metal oxide heterostructures. In particular, we adopted an unprecedented approach to direct tuning of the 2D carrier density using fractionally {delta}-doped oxide superlatt ices. By artificially controlling the carrier density in the 2D electron gas that emerges at a LaxSr1-xTiO3 {delta}-doped layer, we demonstrate that a thermopower as large as 408 {mu}V K-1 can be reached. This approach also yielded a power factor of the 2D carriers 117 {mu}Wcm-1K-2, which is one of the largest reported values from transition metal oxide based materials. The promising result can be attributed to the anisotropic band structure in the 2D system, indicating that {delta}-doped oxide superlattices can be a good candidate for advanced thermoelectrics.
The theory behind the electrical switching of antiferromagnets is premised on the existence of a well defined broken symmetry state that can be rotated to encode information. A spin glass is in many ways the antithesis of this state, characterized by an ergodic landscape of nearly degenerate magnetic configurations, choosing to freeze into a distribution of these in a manner that is seemingly bereft of information. In this study, we show that the coexistence of spin glass and antiferromagnetic order allows a novel mechanism to facilitate the switching of the antiferromagnet Fe$_{1/3+delta}$NbS$_2$, which is rooted in the electrically-stimulated collective winding of the spin glass. The local texture of the spin glass opens an anisotropic channel of interaction that can be used to rotate the equilibrium orientation of the antiferromagnetic state. The use of a spin glass collective dynamics to electrically manipulate antiferromagnetic spin textures has never been applied before, opening the field of antiferromagnetic spintronics to many more material platforms with complex magnetic textures.
The orientation of Neel-type skyrmions in the lacunar spinels GaV$_4$S$_8$ and GaV$_4$Se$_8$ is tied to the polar axes of their underlying crystal structure through the Dzyaloshinskii-Moriya interaction. In these crystals, the skyrmion lattice phase exists for externally applied magnetic fields parallel to these axes and withstands oblique magnetic fields up to some critical angle. Here, we map out the stability of the skyrmion lattice phase in both crystals as a function of field angle and magnitude using dynamic cantilever magnetometry. The measured phase diagrams reproduce the major features predicted by a recent theoretical model, including a reentrant cycloidal phase in GaV$_4$Se$_8$. Nonetheless, we observe a greater robustness of the skyrmion phase to oblique fields, suggesting possible refinements to the model. Besides identifying transitions between the cycloidal, skyrmion lattice, and ferromagnetic states in the bulk, we measure additional anomalies in GaV$_4$Se$_8$ and assign them to magnetic states confined to polar structural domain walls.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا