ترغب بنشر مسار تعليمي؟ اضغط هنا

Higher-order Weyl superconductors with anisotropic Weyl-point connectivity

97   0   0.0 ( 0 )
 نشر من قبل Wenbin Rui
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Weyl superconductors feature Weyl points at zero energy in the three-dimensional (3D) Brillouin zone and arc states that connect the projections of these Weyl points on the surface. We report that higher-order Weyl superconductors can be realized in odd-parity topological superconductors with time-reversal symmetry being broken by periodic driving. Different from conventional Weyl points, the higher-order Weyl points in the bulk separate 2D first- and second-order topological phases, while on the surface, their projections are connected not only by conventional surface Majorana arcs, but also by hinge Majorana arcs. We show that the Weyl-point connectivity via Majorana arcs is largely enriched by the underlying higher-order topology and becomes anisotropic with respect to surface orientations. We identify the anisotropic Weyl-point connectivity as a characteristic feature of higher-order Weyl materials. As each 2D subsystem can be singled out by fixing the periodic driving, we propose how the Majorana zero modes in the 2D higher-order topological phases can be detected and manipulated in experiments.

قيم البحث

اقرأ أيضاً

We introduce higher-order topological Dirac superconductor (HOTDSC) as a new gapless topological phase of matter in three dimensions, which extends the notion of Dirac phase to a higher-order topological version. Topologically distinct from the tradi tional topological superconductors and known Dirac superconductors, a HOTDSC features helical Majorana hinge modes between adjacent surfaces, which are direct consequences of the symmetry-protected higher-order band topology manifesting in the system. Specifically, we show that rotational, spatial inversion, and time-reversal symmetries together protect the coexistence of bulk Dirac nodes and hinge Majorana modes in a seamless way. We define a set of topological indices that fully characterizes the HOTDSC. We further show that a practical way to realize the HOTDSC phase is to introduce unconventional odd-parity pairing to a three-dimensional Dirac semimetal while preserving the necessary symmetries. As a concrete demonstration of our idea, we construct a corresponding minimal lattice model for HOTDSC obeying the symmetry constraints. Our model exhibits the expected topological invariants in the bulk and the defining spectroscopic features on an open geometry, as we explicitly verify both analytically and numerically. Remarkably, the HOTDSC phase offers an example of a higher-order topological quantum critical point, which enables realizations of various higher-order topological phases under different symmetry-breaking patterns. In particular, by breaking the inversion symmetry of a HOTDSC, we arrive at a higher-order Weyl superconductor, which is yet another new gapless topological state that exhibits hybrid higher-order topology.
We investigate higher-order Weyl semimetals (HOWSMs) having bulk Weyl nodes attached to both surface and hinge Fermi arcs. We identify a new type of Weyl node, that we dub a $2nd$ order Weyl node, that can be identified as a transition in momentum sp ace in which both the Chern number and a higher order topological invariant change. As a proof of concept we use a model of stacked higher order quadrupole insulators to identify three types of WSM phases: $1st$-order, $2nd$-order, and hybrid-order. The model can also realize type-II and hybrid-tilt WSMs with various surface and hinge arcs. Moreover, we show that a measurement of charge density in the presence of magnetic flux can help identify some classes of $2nd$ order WSMs. Remarkably, we find that coupling a $2nd$-order Weyl phase with a conventional $1st$-order one can lead to a hybrid-order topological insulator having coexisting surface cones and flat hinge arcs that are independent and not attached to each other. Finally, we show that periodic driving can be utilized as a way for generating HOWSMs. Our results are relevant to metamaterials as well as various phases of Cd$_3$As$_2$, KMgBi, and rutile-structure PtO$_2$ that have been predicted to realize higher order Dirac semimetals.
We study non-Hermitian higher-order Weyl semimetals (NHHOWSMs) possessing real spectra and having inversion $mathcal{I}$ ($mathcal{I}$-NHHOWSM) or time-reversal symmetry $mathcal{T}$ ($mathcal{T}$-NHHOWSM). When the reality of bulk spectra is lost, t he NHHOWSMs exhibit various configurations of surface Fermi Arcs (FAs) and Exceptional Fermi Rings (EFRs), providing a setup to investigate them on an equal footing. The EFRs only appear in the region between 2nd-order WNs. We also discover Weyl nodes originating from non-Hermicity, called non-Hermitian Weyl nodes (NHWNs). Remarkably, we find T-NHHOWSMs which host only 2nd-order NHWNs, having both surface and hinge FAs protected by the quantized biorthogonal Chern number and quadrupole moment, respectively. We call this intrinsically non-Hermitian phase exceptional HOWSM. In contrast to ordinary WNs, the NHWNs can instantly deform to line nodes, forming a monopole comet. The NHWNs also show exceptional tilt-rigidity, which is a strong resistance towards titling due to attachment to exceptional structures. This phenomenon can be a promising experimental knob. Finally, we reveal the exceptional stability of FAs called exceptional helicity. Surface FAs having opposite chirality can live on the same surface without gapping out each other due to the complex nature of the spectrum. Our work motivates an immediate experimental realization of NHHOWSMs.
For first-order topological semimetals, non-Hermitian perturbations can drive the Weyl nodes into Weyl exceptional rings having multiple topological structures and no Hermitian counterparts. Recently, it was discovered that higher-order Weyl semimeta ls, as a novel class of higher-order topological phases, can uniquely exhibit coexisting surface and hinge Fermi arcs. However, non-Hermitian higher-order topological semimetals have not yet been explored. Here, we identify a new type of topological semimetals, i.e, a higher-order topological semimetal with Weyl exceptional rings. In such a semimetal, these rings are characterized by both a spectral winding number and a Chern number. Moreover, the higher-order Weyl-exceptional-ring semimetal supports both surface and hinge Fermi-arc states, which are bounded by the projection of the Weyl exceptional rings onto the surface and hinge, respectively. Noticeably, the dissipative terms can cause the coupling of two exceptional rings with opposite topological charges, so as to induce topological phase transitions. Our studies open new avenues for exploring novel higher-order topological semimetals in non-Hermitian systems.
We report intertwined Weyl phases, which come from superposing topological phases by crystalline symmetry. In the intertwined Weyl phases, an unconventional Weyl phase where Weyl points possess a higher charge (monopole charge>1) due to rotation symm etry, and a higher-order topological phase enforced by rotation symmetry, are superposed. The two phases are no longer separable, but intertwine with each other, resulting in the novel phase. Remarkably, the intertwining leads to a prominent characteristic feature of the intertwined Weyl phases: $textit{the change of Fermi-arc topology}$ in a periodic pattern, i.e., the way how Fermi arcs connect to Weyl points changes drastically with respect to surface orientation, which exhibits a periodic pattern. Such a phenomenon is absent in any individual phase alone. Moreover, we elaborate on how to emulate the intertwined double-Weyl phase in cold atoms. Our theory is quite promising for generating new topological phases based on existing ones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا