ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust metastable skyrmions with tunable size in the chiral magnet FePtMo$_3$N

82   0   0.0 ( 0 )
 نشر من قبل Aleksandr Sukhanov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Synthesis of new materials that can host magnetic skyrmions and their thorough experimental and theoretical characterization are essential for future technological applications. The $beta$-Mn-type compound FePtMo$_3$N is one such novel material that belongs to the chiral space group $P4_132$, where the antisymmetric Dzyaloshinkii-Moriya interaction is allowed due to the absence of inversion symmetry. We report the results of small-angle neutron scattering (SANS) measurements of FePtMo$_3$N and demonstrate that its magnetic ground state is a long-period spin helix with a Curie temperature of 222~K. The magnetic field-induced redistribution of the SANS intensity showed that the helical structure transforms to a lattice of skyrmions at $sim$13~mT at temperatures just below $T_{text C}$. Our key observation is that the skyrmion state in FePtMo$_3$N is robust against field cooling down to the lowest temperatures. Moreover, once the metastable state is prepared by field cooling, the skyrmion lattice exists even in zero field. Furthermore, we show that the skyrmion size in FePtMo$_3$N exhibits high sensitivity to the sample temperature and can be continuously tuned between 120 and 210~nm. This offers new prospects in the control of topological properties of chiral magnets.



قيم البحث

اقرأ أيضاً

172 - T. Schulz , R. Ritz , A. Bauer 2012
When an electron moves in a smoothly varying non-collinear magnetic structure, its spin-orientation adapts constantly, thereby inducing forces that act on both the magnetic structure and the electron. These forces may be described by electric and mag netic fields of an emergent electrodynamics. The topologically quantized winding number of so-called skyrmions, i.e., certain magnetic whirls, discovered recently in chiral magnets are theoretically predicted to induce exactly one quantum of emergent magnetic flux per skyrmion. A moving skyrmion is therefore expected to induce an emergent electric field following Faradays law of induction, which inherits this topological quantization. Here we report Hall effect measurements, which establish quantitatively the predicted emergent electrodynamics. This allows to obtain quantitative evidence of the depinning of skyrmions from impurities at ultra-low current densities of only 10^6 A/m^2 and their subsequent motion. The combination of exceptionally small current densities and simple transport measurements offers fundamental insights into the connection between emergent and real electrodynamics of skyrmions in chiral magnets, and promises to be important for applications in the long-term.
323 - H. Du , X. Zhao , F.N. Rybakov 2018
We report the direct evidence of field-dependent character of the interaction between individual magnetic skyrmions as well as between skyrmions and edges in B20-type FeGe nanostripes observed by means of high resolution Lorentz transmission electron microscopy. It is shown that above certain critical values of external magnetic field the character of such long-range skyrmion interactions change from attraction to repulsion. Experimentally measured equilibrium inter-skyrmion and skrymion-edge distances as function of applied magnetic field shows quantitative agreement with the results of micromagnetic simulations. Important role of demagnetizing fields and internal symmetry of three-dimensional magnetic skyrmions are discussed in details.
Skyrmions, topologically-protected nanometric spin vortices, are being investigated extensively in various magnets. Among them, many of structurally-chiral cubic magnets host the triangular-lattice skyrmion crystal (SkX) as the thermodynamic equilibr ium state. However, this state exists only in a narrow temperature and magnetic-field region just below the magnetic transition temperature $T_mathrm{c}$, while a helical or conical magnetic state prevails at lower temperatures. Here we describe that for a room-temperature skyrmion material, $beta$-Mn-type Co$_8$Zn$_8$Mn$_4$, a field-cooling via the equilibrium SkX state can suppress the transition to the helical or conical state, instead realizing robust metastable SkX states that survive over a very wide temperature and magnetic-field region, including down to zero temperature and up to the critical magnetic field of the ferromagnetic transition. Furthermore, the lattice form of the metastable SkX is found to undergo reversible transitions between a conventional triangular lattice and a novel square lattice upon varying the temperature and magnetic field. These findings exemplify the topological robustness of the once-created skyrmions, and establish metastable skyrmion phases as a fertile ground for technological applications.
The Skyrme-particle, the $skyrmion$, was introduced over half a century ago and used to construct field theories for dense nuclear matter. But with skyrmions being mathematical objects - special types of topological solitons - they can emerge in much broader contexts. Recently skyrmions were observed in helimagnets, forming nanoscale spin-textures that hold promise as information carriers. Extending over length-scales much larger than the inter-atomic spacing, these skyrmions behave as large, classical objects, yet deep inside they are of quantum origin. Penetrating into their microscopic roots requires a multi-scale approach, spanning the full quantum to classical domain. By exploiting a natural separation of exchange energy scales, we achieve this for the first time in the skyrmionic Mott insulator Cu$_2$OSeO$_3$. Atomistic ab initio calculations reveal that its magnetic building blocks are strongly fluctuating Cu$_4$ tetrahedra. These spawn a continuum theory with a skyrmionic texture that agrees well with reported experiments. It also brings to light a decay of skyrmions into half-skyrmions in a specific temperature and magnetic field range. The theoretical multiscale approach explains the strong renormalization of the local moments and predicts further fingerprints of the quantum origin of magnetic skyrmions that can be observed in Cu$_2$OSeO$_3$, like weakly dispersive high-energy excitations associated with the Cu$_4$ tetrahedra, a weak antiferromagnetic modulation of the primary ferrimagnetic order, and a fractionalized skyrmion phase.
The quench dynamics of a system involving two competing orders is investigated using a Ginzburg-Landau theory with relaxational dynamics. We consider the scenario where a pump rapidly heats the system to a high temperature, after which the system coo ls down to its equilibrium temperature. We study the evolution of the order parameter amplitude and fluctuations in the resulting time dependent free energy landscape. Exponentially growing thermal fluctuations dominate the dynamics. The system typically evolves into the phase associated with the faster-relaxing order parameter, even if it is not the global free energy minimum. This theory offers a natural explanation for the widespread experimental observation that metastable states may be induced by laser induced collapse of a dominant equilibrium order parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا