ﻻ يوجد ملخص باللغة العربية
Synthesis of new materials that can host magnetic skyrmions and their thorough experimental and theoretical characterization are essential for future technological applications. The $beta$-Mn-type compound FePtMo$_3$N is one such novel material that belongs to the chiral space group $P4_132$, where the antisymmetric Dzyaloshinkii-Moriya interaction is allowed due to the absence of inversion symmetry. We report the results of small-angle neutron scattering (SANS) measurements of FePtMo$_3$N and demonstrate that its magnetic ground state is a long-period spin helix with a Curie temperature of 222~K. The magnetic field-induced redistribution of the SANS intensity showed that the helical structure transforms to a lattice of skyrmions at $sim$13~mT at temperatures just below $T_{text C}$. Our key observation is that the skyrmion state in FePtMo$_3$N is robust against field cooling down to the lowest temperatures. Moreover, once the metastable state is prepared by field cooling, the skyrmion lattice exists even in zero field. Furthermore, we show that the skyrmion size in FePtMo$_3$N exhibits high sensitivity to the sample temperature and can be continuously tuned between 120 and 210~nm. This offers new prospects in the control of topological properties of chiral magnets.
When an electron moves in a smoothly varying non-collinear magnetic structure, its spin-orientation adapts constantly, thereby inducing forces that act on both the magnetic structure and the electron. These forces may be described by electric and mag
We report the direct evidence of field-dependent character of the interaction between individual magnetic skyrmions as well as between skyrmions and edges in B20-type FeGe nanostripes observed by means of high resolution Lorentz transmission electron
Skyrmions, topologically-protected nanometric spin vortices, are being investigated extensively in various magnets. Among them, many of structurally-chiral cubic magnets host the triangular-lattice skyrmion crystal (SkX) as the thermodynamic equilibr
The Skyrme-particle, the $skyrmion$, was introduced over half a century ago and used to construct field theories for dense nuclear matter. But with skyrmions being mathematical objects - special types of topological solitons - they can emerge in much
The quench dynamics of a system involving two competing orders is investigated using a Ginzburg-Landau theory with relaxational dynamics. We consider the scenario where a pump rapidly heats the system to a high temperature, after which the system coo