ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonadiabatic dynamics at metal surfaces: fewest switches surface hopping with electronic relaxation

295   0   0.0 ( 0 )
 نشر من قبل Zuxin Jin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new scheme is proposed for modeling molecular nonadiabatic dynamics near metal surfaces. The charge-transfer character of such dynamics is exploited to construct an efficient reduced representation for the electronic structure. In this representation, the fewest switches surface hopping (FSSH) approach can be naturally modified to include electronic relaxation (ER). The resulting FSSH-ER method is valid across a wide range of coupling strength as supported by tests applied to the Anderson-Holstein model for electron transfer. Future work will combine this scheme with ab initio electronic structure calculations.



قيم البحث

اقرأ أيضاً

We present a preliminary extension of the fewest switches surface hopping (FSSH) algorithm to the case of complex Hamiltonians as appropriate for modeling the dynamics of photoexcited molecules in magnetic fields. We make ansatze for the direction of momentum rescaling and we account for Berrys phase effects through magnetic forces as applicable in the adiabatic limit. Because Berrys phase is a nonlocal, topological characteristic of a set of entangled potential energy surfaces, we find that Tullys local FSSH algorithm can only partially capture the correct physics.
Recently, spin selection rules have been invoked to explain the discrepancy between measured and calculated adsorption probabilities of molecular oxygen reacting with Al(111). In this work, we inspect the impact of nonadiabatic spin transitions on th e dynamics of this system from first principles. For this purpose the motion on two distinct potential-energy surfaces associated to different spin configurations and possible transitions between them are inspected by means of the Fewest Switches algorithm. Within this framework we especially focus on the influence of such spin transitions on observables accessible to molecular beam experiments. On this basis we suggest experimental setups that can validate the occurrence of such transitions and discuss their feasibility.
Molecular adsorbates on metal surfaces exchange energy with substrate phonons and low-lying electron-hole pair excitations. In the limit of weak coupling, electron-hole pair excitations can be seen as exerting frictional forces on adsorbates that enh ance energy transfer and facilitate vibrational relaxation or hot-electron mediated chemistry. We have recently reported on the relevance of tensorial properties of electronic friction [Phys. Rev. Lett. 116, 217601 (2016)] in dynamics at surfaces. Here we present the underlying implementation of tensorial electronic friction based on Kohn-Sham Density Functional Theory for condensed phase and cluster systems. Using local atomic-orbital basis sets, we calculate nonadiabatic coupling matrix elements and evaluate the full electronic friction tensor in the classical limit. Our approach is numerically stable and robust as shown by a detailed convergence analysis. We furthermore benchmark the accuracy of our approach by calculation of vibrational relaxation rates and lifetimes for a number of diatomic molecules at metal surfaces. We find friction-induced mode-coupling between neighboring CO adsorbates on Cu(100) in a c(2x2) overlayer to be important to understand experimental findings.
A theoretical justification of the empirical surface hopping method for the laser-driven molecular dynamics is given utilizing the formalism of the exact factorization of the molecular wavefunction [Abedi et al., PRL $textbf{105}$, 123002 (2010)] in its quantum-classical limit. Employing an exactly solvable $textrm H_2^{;+}$-like model system, it is shown that the deterministic classical nuclear motion on a single time-dependent surface in this approach describes the same physics as stochastic (hopping-induced) motion on several surfaces, provided Floquet surfaces are applied. Both quantum-classical methods do describe reasonably well the exact nuclear wavepacket dynamics for extremely different dissociation scenarios. Hopping schemes using Born-Oppenheimer surfaces or instantaneous Born-Oppenheimer surfaces fail completely.
A mixed quantum-classical approach to simulate the coupled dynamics of electrons and nuclei in nanoscale molecular systems is presented. The method relies on a second order expansion of the Lagrangian in time-dependent density functional theory (TDDF T) around a suitable reference density. We show that the inclusion of the second order term renders the method a self-consistent scheme and improves the calculated optical spectra of molecules by a proper treatment of the coupled response. In the application to ion-fullerene collisions, the inclusion of self-consistency is found to be crucial for a correct description of the charge transfer between projectile and target. For a model of the photoreceptor in retinal proteins, nonadiabatic molecular dynamics simulations are performed and reveal problems of TDDFT in the prediction of intra-molecular charge transfer excitations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا