ﻻ يوجد ملخص باللغة العربية
A new scheme is proposed for modeling molecular nonadiabatic dynamics near metal surfaces. The charge-transfer character of such dynamics is exploited to construct an efficient reduced representation for the electronic structure. In this representation, the fewest switches surface hopping (FSSH) approach can be naturally modified to include electronic relaxation (ER). The resulting FSSH-ER method is valid across a wide range of coupling strength as supported by tests applied to the Anderson-Holstein model for electron transfer. Future work will combine this scheme with ab initio electronic structure calculations.
We present a preliminary extension of the fewest switches surface hopping (FSSH) algorithm to the case of complex Hamiltonians as appropriate for modeling the dynamics of photoexcited molecules in magnetic fields. We make ansatze for the direction of
Recently, spin selection rules have been invoked to explain the discrepancy between measured and calculated adsorption probabilities of molecular oxygen reacting with Al(111). In this work, we inspect the impact of nonadiabatic spin transitions on th
Molecular adsorbates on metal surfaces exchange energy with substrate phonons and low-lying electron-hole pair excitations. In the limit of weak coupling, electron-hole pair excitations can be seen as exerting frictional forces on adsorbates that enh
A theoretical justification of the empirical surface hopping method for the laser-driven molecular dynamics is given utilizing the formalism of the exact factorization of the molecular wavefunction [Abedi et al., PRL $textbf{105}$, 123002 (2010)] in
A mixed quantum-classical approach to simulate the coupled dynamics of electrons and nuclei in nanoscale molecular systems is presented. The method relies on a second order expansion of the Lagrangian in time-dependent density functional theory (TDDF