ﻻ يوجد ملخص باللغة العربية
Achieving human-like motion in robots has been a fundamental goal in many areas of robotics research. Inverse kinematic (IK) solvers have been explored as a solution to provide kinematic structures with anthropomorphic movements. In particular, numeric solvers based on geometry, such as FABRIK, have shown potential for producing human-like motion at a low computational cost. Nevertheless, these methods have shown limitations when solving for robot kinematic constraints. This work proposes a framework inspired by FABRIK for human pose imitation in real-time. The goal is to mitigate the problems of the original algorithm while retaining the resulting humanlike fluidity and low cost. We first propose a human constraint model for pose imitation. Then, we present a pose imitation algorithm (PIC), and its soft version (PICs) that can successfully imitate human poses using the proposed constraint system. PIC was tested on two collaborative robots (Baxter and YuMi). Fifty human demonstrations were collected for a bi-manual assembly and an incision task. Then, two performance metrics were obtained for both robots: pose accuracy with respect to the human and the percentage of environment occlusion/obstruction. The performance of PIC and PICs was compared against the numerical solver baseline (FABRIK). The proposed algorithms achieve a higher pose accuracy than FABRIK for both tasks (25%-FABRIK, 53%-PICs, 58%-PICs). In addition, PIC and its soft version achieve a lower percentage of occlusion during incision (10%-FABRIK, 4%-PICs, 9%-PICs). These results indicate that the PIC method can reproduce human poses and achieve key desired effects of human imitation.
We present PufferBot, an aerial robot with an expandable structure that may expand to protect a drones propellers when the robot is close to obstacles or collocated humans. PufferBot is made of a custom 3D-printed expandable scissor structure, which
The objective of this paper is to present a systematic review of existing sensor-based control methodologies for applications that involve direct interaction between humans and robots, in the form of either physical collaboration or safe coexistence.
We introduce shape-changing swarm robots. A swarm of self-transformable robots can both individually and collectively change their configuration to display information, actuate objects, act as tangible controllers, visualize data, and provide physica
Physical embodiment is a required component for robots that are structurally coupled with their real-world environments. However, most socially interactive robots do not need to physically interact with their environments in order to perform their ta
RoomShift is a room-scale dynamic haptic environment for virtual reality, using a small swarm of robots that can move furniture. RoomShift consists of nine shape-changing robots: Roombas with mechanical scissor lifts. These robots drive beneath a pie