ترغب بنشر مسار تعليمي؟ اضغط هنا

Controlling Style in Generated Dialogue

88   0   0.0 ( 0 )
 نشر من قبل Y-Lan Boureau
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Open-domain conversation models have become good at generating natural-sounding dialogue, using very large architectures with billions of trainable parameters. The vast training data required to train these architectures aggregates many different styles, tones, and qualities. Using that data to train a single model makes it difficult to use the model as a consistent conversational agent, e.g. with a stable set of persona traits and a typical style of expression. Several architectures affording control mechanisms over generation architectures have been proposed, each with different trade-offs. However, it remains unclear whether their use in dialogue is viable, and what the trade-offs look like with the most recent state-of-the-art conversational architectures. In this work, we adapt three previously proposed controllable generation architectures to open-domain dialogue generation, controlling the style of the generation to match one among about 200 possible styles. We compare their respective performance and tradeoffs, and show how they can be used to provide insights into existing conversational datasets, and generate a varied set of styled conversation replies.



قيم البحث

اقرأ أيضاً

Controllable text generation is an appealing but challenging task, which allows users to specify particular attributes of the generated outputs. In this paper, we propose a controllable dialogue generation model to steer response generation under mul ti-attribute constraints. Specifically, we define and categorize the commonly used control attributes into global and local ones, which possess different granularities of effects on response generation. Then, we significantly extend the conventional seq2seq framework by introducing a novel two-stage decoder, which first uses a multi-grained style specification layer to impose the stylistic constraints and determine word-level control states of responses based on the attributes, and then employs a response generation layer to generate final responses maintaining both semantic relevancy to the contexts and fidelity to the attributes. Furthermore, we train our model with an attribute consistency reward to promote response control with explicit supervision signals. Extensive experiments and in-depth analyses on two datasets indicate that our model can significantly outperform competitive baselines in terms of response quality, content diversity and controllability.
Neural Style Transfer has shown very exciting results enabling new forms of image manipulation. Here we extend the existing method to introduce control over spatial location, colour information and across spatial scale. We demonstrate how this enhanc es the method by allowing high-resolution controlled stylisation and helps to alleviate common failure cases such as applying ground textures to sky regions. Furthermore, by decomposing style into these perceptual factors we enable the combination of style information from multiple sources to generate new, perceptually appealing styles from existing ones. We also describe how these methods can be used to more efficiently produce large size, high-quality stylisation. Finally we show how the introduced control measures can be applied in recent methods for Fast Neural Style Transfer.
We propose a weakly-supervised approach for conditional image generation of complex scenes where a user has fine control over objects appearing in the scene. We exploit sparse semantic maps to control object shapes and classes, as well as textual des criptions or attributes to control both local and global style. In order to condition our model on textual descriptions, we introduce a semantic attention module whose computational cost is independent of the image resolution. To further augment the controllability of the scene, we propose a two-step generation scheme that decomposes background and foreground. The label maps used to train our model are produced by a large-vocabulary object detector, which enables access to unlabeled data and provides structured instance information. In such a setting, we report better FID scores compared to fully-supervised settings where the model is trained on ground-truth semantic maps. We also showcase the ability of our model to manipulate a scene on complex datasets such as COCO and Visual Genome.
In this work, we propose global style tokens (GSTs), a bank of embeddings that are jointly trained within Tacotron, a state-of-the-art end-to-end speech synthesis system. The embeddings are trained with no explicit labels, yet learn to model a large range of acoustic expressiveness. GSTs lead to a rich set of significant results. The soft interpretable labels they generate can be used to control synthesis in novel ways, such as varying speed and speaking style - independently of the text content. They can also be used for style transfer, replicating the speaking style of a single audio clip across an entire long-form text corpus. When trained on noisy, unlabeled found data, GSTs learn to factorize noise and speaker identity, providing a path towards highly scalable but robust speech synthesis.
Unsupervised style transfer aims to change the style of an input sentence while preserving its original content without using parallel training data. In current dominant approaches, owing to the lack of fine-grained control on the influence from the target style,they are unable to yield desirable output sentences. In this paper, we propose a novel attentional sequence-to-sequence (Seq2seq) model that dynamically exploits the relevance of each output word to the target style for unsupervised style transfer. Specifically, we first pretrain a style classifier, where the relevance of each input word to the original style can be quantified via layer-wise relevance propagation. In a denoising auto-encoding manner, we train an attentional Seq2seq model to reconstruct input sentences and repredict word-level previously-quantified style relevance simultaneously. In this way, this model is endowed with the ability to automatically predict the style relevance of each output word. Then, we equip the decoder of this model with a neural style component to exploit the predicted wordlevel style relevance for better style transfer. Particularly, we fine-tune this model using a carefully-designed objective function involving style transfer, style relevance consistency, content preservation and fluency modeling loss terms. Experimental results show that our proposed model achieves state-of-the-art performance in terms of both transfer accuracy and content preservation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا