ترغب بنشر مسار تعليمي؟ اضغط هنا

Unfolding WMMSE using Graph Neural Networks for Efficient Power Allocation

121   0   0.0 ( 0 )
 نشر من قبل Arindam Chowdhury
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the problem of optimal power allocation in a single-hop ad hoc wireless network. In solving this problem, we depart from classical purely model-based approaches and propose a hybrid method that retains key modeling elements in conjunction with data-driven components. More precisely, we put forth a neural network architecture inspired by the algorithmic unfolding of the iterative weighted minimum mean squared error (WMMSE) method, that we denote by unfolded WMMSE (UWMMSE). The learnable weights within UWMMSE are parameterized using graph neural networks (GNNs), where the time-varying underlying graphs are given by the fading interference coefficients in the wireless network. These GNNs are trained through a gradient descent approach based on multiple instances of the power allocation problem. We show that the proposed architecture is permutation equivariant, thus facilitating generalizability across network topologies. Comprehensive numerical experiments illustrate the performance attained by UWMMSE along with its robustness to hyper-parameter selection and generalizability to unseen scenarios such as different network densities and network sizes.



قيم البحث

اقرأ أيضاً

We study the problem of optimal power allocation in a single-hop ad hoc wireless network. In solving this problem, we propose a hybrid neural architecture inspired by the algorithmic unfolding of the iterative weighted minimum mean squared error (WMM SE) method, that we denote as unfolded WMMSE (UWMMSE). The learnable weights within UWMMSE are parameterized using graph neural networks (GNNs), where the time-varying underlying graphs are given by the fading interference coefficients in the wireless network. These GNNs are trained through a gradient descent approach based on multiple instances of the power allocation problem. Once trained, UWMMSE achieves performance comparable to that of WMMSE while significantly reducing the computational complexity. This phenomenon is illustrated through numerical experiments along with the robustness and generalization to wireless networks of different densities and sizes.
In this paper we study the problem of power and channel allocation with the objective of maximizing the system sum-rate for multicarrier non-orthogonal multiple access (NOMA) full duplex (FD) systems. Such an allocation problem is non-convex and, thu s, with the goal of designing a low complexity solution, we propose a scheme based on the minimization of the weighted mean square error, which achieves performance reasonably close to the optimum and allows to clearly outperforms a conventional orthogonal multiple access approach. Numerical results assess the effectiveness of our algorithm.
A fundamental problem in the design of wireless networks is to efficiently schedule transmission in a distributed manner. The main challenge stems from the fact that optimal link scheduling involves solving a maximum weighted independent set (MWIS) p roblem, which is NP-hard. For practical link scheduling schemes, distributed greedy approaches are commonly used to approximate the solution of the MWIS problem. However, these greedy schemes mostly ignore important topological information of the wireless networks. To overcome this limitation, we propose a distributed MWIS solver based on graph convolutional networks (GCNs). In a nutshell, a trainable GCN module learns topology-aware node embeddings that are combined with the network weights before calling a greedy solver. In small- to middle-sized wireless networks with tens of links, even a shallow GCN-based MWIS scheduler can leverage the topological information of the graph to reduce in half the suboptimality gap of the distributed greedy solver with good generalizability across graphs and minimal increase in complexity.
Efficient scheduling of transmissions is a key problem in wireless networks. The main challenge stems from the fact that optimal link scheduling involves solving a maximum weighted independent set (MWIS) problem, which is known to be NP-hard. For pra ctical link scheduling schemes, centralized and distributed greedy heuristics are commonly used to approximate the solution to the MWIS problem. However, these greedy schemes mostly ignore important topological information of the wireless network. To overcome this limitation, we propose fast heuristics based on graph convolutional networks (GCNs) that can be implemented in centralized and distributed manners. Our centralized MWIS solver is based on tree search guided by a trainable GCN module and 1-step rollout. In our distributed MWIS solver, a trainable GCN module learns topology-aware node embeddings that are combined with the network weights before calling a distributed greedy solver. Test results on medium-sized wireless networks show that a GCN-based centralized MWIS solver can reach a near-optimal solution quickly. Moreover, we demonstrate that a shallow GCN-based distributed MWIS scheduler can reduce by nearly half the suboptimality gap of the distributed greedy solver with minimal increase in complexity. The proposed scheduling solutions also exhibit good generalizability across graph and weight distributions.
The research efforts on cellular vehicle-to-everything (V2X) communications are gaining momentum with each passing year. It is considered as a paradigm-altering approach to connect a large number of vehicles with minimal cost of deployment and mainte nance. This article aims to further push the state-of-the-art of cellular V2X communications by providing an optimization framework for wireless charging, power allocation, and resource block assignment. Specifically, we design a network model where roadside objects use wireless power from RF signals of electric vehicles for charging and information processing. Moreover, due to the resource-constraint nature of cellular V2X, the power allocation and resource block assignment are performed to efficiently use the resources. The proposed optimization framework shows an improvement in terms of the overall energy efficiency of the network when compared with the baseline technique. The performance gains of the proposed solution clearly demonstrate its feasibility and utility for cellular V2X communications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا