ﻻ يوجد ملخص باللغة العربية
We obtain sharp asymptotic estimates on the number of $n times n$ contingency tables with two linear margins $Cn$ and $BCn$. The results imply a second order phase transition on the number of such contingency tables, with a critical value at ts $B_{c}:=1 + sqrt{1+1/C}$. As a consequence, for ts $B>B_{c}$, we prove that the classical emph{independence heuristic} leads to a large undercounting.
In this work we define log-linear models to compare several square contingency tables under the quasi-independence or the quasi-symmetry model, and the relevant Markov bases are theoretically characterized. Through Markov bases, an exact test to eval
We investigate the independence number of two graphs constructed from a polarity of $mathrm{PG}(2,q)$. For the first graph under consideration, the ErdH{o}s-Renyi graph $ER_q$, we provide an improvement on the known lower bounds on its independence n
The analogue of Hadwigers conjecture for the immersion order states that every graph $G$ contains $K_{chi (G)}$ as an immersion. If true, it would imply that every graph with $n$ vertices and independence number $alpha$ contains $K_{lceil frac nalpha
We prove that the number of Hamilton cycles in the random graph G(n,p) is n!p^n(1+o(1))^n a.a.s., provided that pgeq (ln n+ln ln n+omega(1))/n. Furthermore, we prove the hitting-time version of this statement, showing that in the random graph process
In this paper, we establish a couple of results on extremal problems in bipartite graphs. Firstly, we show that every sufficiently large bipartite graph with average degree $Delta$ and with $n$ vertices on each side has a balanced independent set con