ﻻ يوجد ملخص باللغة العربية
We revisit the impact of early dark energy (EDE) on galaxy clustering using BOSS galaxy power spectra, analyzed using the effective field theory (EFT) of large-scale structure (LSS), and anisotropies of the cosmic microwave background (CMB) from Planck. Recent studies found that these data place stringent constraints on the maximum abundance of EDE allowed in the Universe. We argue here that their conclusions are a consequence of their choice of priors on the EDE parameter space, rather than any disagreement between the data and the model. For example, when considering EFT-LSS, CMB, and high-redshift supernovae data we find the EDE and $Lambda$CDM models can provide statistically indistinguishable fits ($Delta chi^2 = 0.12$) with a relatively large value for the maximum fraction of energy density in the EDE ($f_{rm ede} = 0.09$) and Hubble constant ($H_0 = 71$ km/s/Mpc) in the EDE model. Moreover, we demonstrate that the constraining power added from the inclusion of EFT-LSS traces to the potential tension between the power-spectrum amplitudes $A_s$ derived from BOSS and from Planck that arises even within the context of $Lambda$CDM. Until this is better understood, caution should be used when interpreting EFT-BOSS+Planck constraints to models beyond $Lambda$CDM. These findings suggest that EDE still provides a potential resolution to the Hubble tension and that it is worthwhile to test the predictions of EDE with future data-sets and further study its theoretical possibilities.
An axion-like field comprising $sim 10%$ of the energy density of the universe near matter-radiation equality is a candidate to resolve the Hubble tension; this is the early dark energy (EDE) model. However, as shown in Hill et al. (2020), the model
Recently a full-shape analysis of large-scale structure (LSS) data was employed to provide new constraints on a class of Early Dark Energy (EDE) models. In this note, we derive similar constraints on New Early Dark Energy (NEDE) using the publicly av
Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale $k_m$ for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be
New measurements of the expansion rate of the Universe have plunged the standard model of cosmology into a severe crisis. In this letter, we propose a simple resolution to the problem that relies on a first order phase transition in a dark sector in
Current cosmological data exhibit a tension between inferences of the Hubble constant, $H_0$, derived from early and late-universe measurements. One proposed solution is to introduce a new component in the early universe, which initially acts as earl