ﻻ يوجد ملخص باللغة العربية
Surface operators are among the most important observables of the 6d $mathcal{N} = (2,0)$ theory. Here we apply the tools of defect CFT to study local operator insertions into the 1/2-BPS plane. We first relate the 2-point function of the displacement operator to the expectation value of the bulk stress tensor and translate this relation into a constraint on the anomaly coefficients associated with the defect. Secondly, we study the defect operator expansion of the stress tensor multiplet and identify several new operators of the defect CFT. Technical results derived along the way include the explicit supersymmetry tranformations of the stress tensor multiplet and the classification of unitary representations of the superconformal algebra preserved by the defect.
The 6d $mathcal{N}=(2,0)$ theory has natural surface operator observables, which are akin in many ways to Wilson loops in gauge theories. We propose a definition of a locally BPS surface operator and study its conformal anomalies, the analog of the c
Surface operators in the 6d (2,0) theory at large $N$ have a holographic description in terms of M2 branes probing the AdS$_7 times S^4$ M-theory background. The most symmetric, 1/2-BPS, operator is defined over a planar or spherical surface, and it
Compactifying type $A_{N-1}$ 6d ${cal N}{=}(2,0)$ supersymmetric CFT on a product manifold $M^4timesSigma^2=M^3timestilde{S}^1times S^1times{cal I}$ either over $S^1$ or over $tilde{S}^1$ leads to maximally supersymmetric 5d gauge theories on $M^4tim
The dimensional-deconstruction prescription of Arkani-Hamed, Cohen, Kaplan, Karch and Motl provides a mechanism for recovering the $A$-type (2,0) theories on $T^2$, starting from a four-dimensional $mathcal N=2$ circular-quiver theory. We put this co
We study type-B conformal anomalies associated with $frac{1}{2}$-BPS Coulomb-branch operators in 4D $mathcal N=2$ superconformal field theories. When the vacuum preserves the conformal symmetry these anomalies coincide with the two-point function coe