ﻻ يوجد ملخص باللغة العربية
We make use of sensitive (9.3 microJy/beam RMS) 1.2mm-continuum observations from the ASPECS ALMA large program of the Hubble Ultra Deep Field (HUDF) to probe dust-enshrouded star formation from 1362 Lyman-break galaxies spanning the redshift range z=1.5-10 (to ~7-28 Msolar/yr at 4 sigma over the entire range). We find that the fraction of ALMA-detected galaxies in our z=1.5-10 samples increases steeply with stellar mass, with the detection fraction rising from 0% at 10^9 Msolar to 85(-18)(+9)% at >10^{10} Msolar. Moreover, stacking all 1253 low-mass (<10^{9.25} Msolar) galaxies over the ASPECS footprint, we find a mean continuum flux of -0.1+/-0.4 microJy/beam, implying a hard upper limit on the obscured SFR of <0.6 Msolar/yr (4 sigma) in a typical low-mass galaxy. The correlation between the infrared excess IRX of UV-selected galaxies (L(IR)/L(UV)) and the UV-continuum slope is also seen in our ASPECS data and shows consistency with a Calzetti-like relation at >10^{9.5} M_{solar} and a SMC-like relation at lower masses. Using stellar-mass and beta measurements for z~2 galaxies over CANDELS, we derive a new empirical relation between beta and stellar mass and then use this correlation to show that our IRX-beta and IRX-stellar mass relations are consistent with each other. We then use these constraints to express the infrared excess as a bivariate function of beta and stellar mass. Finally, we present updated estimates of star-formation rate density determinations at z>3, leveraging current improvements in the measured infrared excess and recent probes of ultra-luminous far-IR galaxies at z>2.
We make use of deep 1.2mm-continuum observations (12.7microJy/beam RMS) of a 1 arcmin^2 region in the Hubble Ultra Deep Field to probe dust-enshrouded star formation from 330 Lyman-break galaxies spanning the redshift range z=2-10 (to ~2-3 Msol/yr at
We present an analysis using the MOSFIRE Deep Evolution Field (MOSDEF) survey on the nature of MIR-excess galaxies, which have star formation rates (SFR) inferred from mid-infrared (MIR) data that is substantially elevated relative to that estimated
We build a sample of 298 spectroscopically-confirmed galaxies at redshift z~2, selected in the z-band from the GOODS-MUSIC catalog. By exploiting the rest frame 8 um luminosity as a proxy of the star formation rate (SFR) we check the accuracy of the
We present the detailed characterisation of a sample of 56 sources serendipitously detected in ALMA band 7, as part of the ALMA Large Program to INvestigate CII at Early Times (ALPINE) in COSMOS and ECDFS. These sources have been used to derive the t
We measure star-formation rates (SFRs) and specific SFRs (SSFRs) of Ks-selected galaxies from the VIDEO survey by stacking 1.4-GHz Very Large Array data. We split the sample, which spans 0 < z < 3 and stellar masses 10**8.0 < Mstellar/Msol < 10**11.5