ترغب بنشر مسار تعليمي؟ اضغط هنا

The Lyman-alpha Emission in Solar Flares. I. a Statistical Study on Its Relationship with the 1--8 AA Soft X-ray Emission

47   0   0.0 ( 0 )
 نشر من قبل Ying Li
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We statistically study the relationship between the Lyman-alpha (lya) and 1--8 AA soft X-ray (SXR) emissions from 658 M- and X-class solar flares observed by the {em Geostationary Operational Environmental Satellite} during 2006--2016. Based on the peak times of the two waveband emissions, we divide the flares into three types. Type I (III) has an earlier (a later) peak time in the lya emission than that in the SXR emission, while type II has nearly a same peak time (within the time resolution of 10 s) between the lya and SXR emissions. In these 658 flares, we find that there are 505 (76.8%) type I flares, 10 (1.5%) type II flares, and 143 (21.7%) type III flares, and that the three types appear to have no dependence on the flare duration, flare location, or solar cycle. Besides the main peak, the lya emission of the three type flares also shows sub-peaks which can appear in the impulsive or gradual phase of the flare. It is found that the main-peak (for type I) and sub-peak (for type III) emissions of lya that appear in the impulsive phase follow the Neupert effect in general. This indicates that such lya emissions are related to the nonthermal electron beam heating. While the main-peak (for type III) and sub-peak (for type I) emissions of lya that appear in the gradual phase are supposed to be primarily contributed by the thermal plasma that cools down.

قيم البحث

اقرأ أيضاً

72 - Dong Li , Lei Lu , Zongjun Ning 2020
We investigated the quasi-periodic pulsation (QPP) in Lyman-alpha, X-ray and extreme-ultraviolet (EUV) emissions during two solar flares, i.e., an X-class (SOL2012-01-27T) and a C-class (SOL2016-02-08T). The full-disk Lyman-alpha and X-Ray flux durin g these solar flares were recorded by the EUV Sensor and X-Ray Sensor on board the Geostationary Operational Environmental Satellite. The {deg}are regions were located from the EUV images measured by the Atmospheric Imaging Assembly. The QPP could be identified as a series of regular and periodic peaks in the light curves, and its quasi-periodicity was determined from the global wavelet and Fourier power spectra. A quasi-periodicity at about 3 minutes is detected during the impulsive phase of the X-class flare, which could be explained as the acoustic wave in the chromosphere (e.g., Milligan et al. 2017). Interestingly, a quasi-periodicity at roughly 1 minute is discovered during the entire evolutionary phases of solar flares, including the precursor, impulsive, and gradual phases. This is the first report of 1-minute QPP in the Lyman-alpha emission during solar flares, in particular during the flare precursor. It may be interpreted as a self-oscillatory regime of the magnetic reconnection, such as magnetic dripping.
Small amplitude quasi-periodic pulsations (QPPs) detected in soft X-ray emission are commonplace in many flares. To date, the underpinning processes resulting in the QPPs are unknown. In this paper, we attempt to constrain the prevalence of textit{st ationary} QPPs in the largest statistical study to date, including a study of the relationship of QPP periods to the properties of the flaring active region, flare ribbons, and CME affiliation. We build upon the work of cite{inglis2016} and use a model comparison test to search for significant power in the Fourier spectra of lightcurves of the GOES 1--8~AA channel. We analyze all X-, M- and C- class flares of the past solar cycle, a total of 5519 flares, and search for periodicity in the 6-300~s timescale range. Approximately 46% of X-class, 29% of M-class and 7% of C-class flares show evidence of stationary QPPs, with periods that follow a log-normal distribution peaked at 20~s. The QPP periods were found to be independent of flare magnitude, however a positive correlation was found between QPP period and flare duration. No dependence of the QPP periods to the global active region properties was identified. A positive correlation was found between QPPs and ribbon properties including unsigned magnetic flux, ribbon area and ribbon separation distance. We found that both flares with and without an associated CME can host QPPs. Furthermore, we demonstrate that for X- and M- class flares, decay phase QPPs have statistically longer periods than impulsive phase QPPs.
Continuum emission, also called white-light emission (WLE), and permanent changes of the magnetic field ($Delta{B}_{{rm{LOS}}}$) are often observed during solar flares. But their relation and their precise mechanisms are still unknown. We study stati stically the relationship between $Delta{B}_{{rm{LOS}}}$ and WLE during 75 solar flares of different strengths and locations on the solar disk. We analyze SDO/HMI data and determine for each pixel in each flare if it exhibited WLE and/or $Delta{B}_{{rm{LOS}}}$. We then investigate the occurrence, strength, and spatial size of the WLE, its dependence on flare energy, and its correlation to the occurrence of $Delta{B}_{{rm{LOS}}}$. We detected WLE in 44/75 flares and $Delta{B}_{{rm{LOS}}}$ in 59/75 flares. We find that WLE and $Delta{B}_{{rm{LOS}}}$ are related, and their locations often overlap between 0-60%. Not all locations coincide, thus potentially indicating differences in their origin. We find that the WL area is related to the flare class by a power law and extend the findings of previous studies, that the WLE is related to the flare class by a power law, to also be valid for C-class flares. To compare unresolved (Sun-as-a-star) WL measurements to our data, we derive a method to calculate temperatures and areas of such data under the black-body assumption. The calculated unresolved WLE areas improve, but still differ to the resolved flaring area by about a factor of 5-10 (previously 10-20), which could be explained by various physical or instrumental causes. This method could also be applied to stellar flares to determine their temperatures and areas independently.
111 - L.M. Winter 2014
We present an alternate method of determining the progression of the solar cycle through an analysis of the solar X-ray background. Our results are based on the NOAA Geostationary Operational Environmental Satellites (GOES) X-ray data in the 1-8 AA$, $band from 1986 - present, covering solar cycles 22, 23, and 24. The X-ray background level tracks the progression of the solar cycle through its maximum and minimum. Using the X-ray data, we can therefore make estimates of the solar cycle progression and date of solar maximum. Based upon our analysis, we conclude that the Sun reached its hemisphere-averaged maximum in Solar Cycle 24 in late 2013. This is within six months of the NOAA prediction of a maximum in Spring 2013.
We present the results of a photometric and spectroscopic survey of 321 Lyman break galaxies (LBGs) at z ~ 3 to investigate systematically the relationship between Lya emission and stellar populations. Lya equivalent widths (EW) were calculated from rest-frame UV spectroscopy and optical/near-infrared/Spitzer photometry was used in population synthesis modeling to derive the key properties of age, dust extinction, star formation rate (SFR), and stellar mass. We directly compare the stellar populations of LBGs with and without strong Lya emission, where we designate the former group (EW > 20 AA) as Lya emitters (LAEs) and the latter group (EW < 20 AA) as non-LAEs. This controlled method of comparing objects from the same UV luminosity distribution represents an improvement over previous studies in which the stellar populations of LBGs and narrowband-selected LAEs were contrasted, where the latter were often intrinsically fainter in broadband filters by an order of magnitude simply due to different selection criteria. Using a variety of statistical tests, we find that Lya equivalent width and age, SFR, and dust extinction, respectively, are significantly correlated in the sense that objects with strong Lya emission also tend to be older, lower in star formation rate, and less dusty than objects with weak Lya emission, or the line in absorption. We accordingly conclude that, within the LBG sample, objects with strong Lya emission represent a later stage of galaxy evolution in which supernovae-induced outflows have reduced the dust covering fraction. We also examined the hypothesis that the attenuation of Lya photons is lower than that of the continuum, as proposed by some, but found no evidence to support this picture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا