ترغب بنشر مسار تعليمي؟ اضغط هنا

Convergence and Error Estimates for the Conservative Spectral Method for Fokker-Planck-Landau Equations

115   0   0.0 ( 0 )
 نشر من قبل Irene M. Gamba
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Error estimates are rigorously derived for a semi-discrete version of a conservative spectral method for approximating the space-homogeneous Fokker-Planck-Landau (FPL) equation associated to hard potentials. The analysis included shows that the semi-discrete problem has a unique solution with bounded moments. In addition, the derivatives of such a solution up to any order also remain bounded in $L^2$ spaces globally time, under certain conditions. These estimates, combined with control of the spectral projection, are enough to obtain error estimates to the analytical solution and convergence to equilibrium states. It should be noted that this is the first time that an error estimate has been produced for any numerical method which approximates FPL equations associated to any range of potentials.

قيم البحث

اقرأ أيضاً

In this paper stability and error estimates for time discretizations of linear and semilinear parabolic equations by the two-step backward differentiation formula (BDF2) method with variable step-sizes are derived. An affirmative answer is provided t o the question: whether the upper bound of step-size ratios for the $l^infty(0,T;H)$-stability of the BDF2 method for linear and semilinear parabolic equations is identical with the upper bound for the zero-stability. The $l^infty(0,T;V)$-stability of the variable step-size BDF2 method is also established under more relaxed condition on the ratios of consecutive step-sizes. Based on these stability results, error estimates in several different norms are derived. To utilize the BDF method the trapezoidal method and the backward Euler scheme are employed to compute the starting value. For the latter choice, order reduction phenomenon of the constant step-size BDF2 method is observed theoretically and numerically in several norms. Numerical results also illustrate the effectiveness of the proposed method for linear and semilinear parabolic equations.
The G-equation is a well-known model for studying front propagation in turbulent combustion. In this paper, we develop an efficient model reduction method for computing textcolor{black}{regular solutions} of viscous G-equations in incompressible stea dy and time-periodic cellular flows. Our method is based on the Galerkin proper orthogonal decomposition (POD) method. To facilitate the algorithm design and convergence analysis, we decompose the solution of the viscous G-equation into a mean-free part and a mean part, where their evolution equations can be derived accordingly. We construct the POD basis from the solution snapshots of the mean-free part. With the POD basis, we can efficiently solve the evolution equation for the mean-free part of the solution to the viscous G-equation. After we get the mean-free part of the solution, the mean of the solution can be recovered. We also provide rigorous convergence analysis for our method. Numerical results for textcolor{black}{viscous G-equations and curvature G-equations} are presented to demonstrate the accuracy and efficiency of the proposed method. In addition, we study the turbulent flame speeds of the viscous G-equations in incompressible cellular flows.
78 - N. Loy , M. Zanella 2019
In this work we consider an extension of a recently proposed structure preserving numerical scheme for nonlinear Fokker-Planck-type equations to the case of nonconstant full diffusion matrices. While in existing works the schemes are formulated in a one-dimensional setting, here we consider exclusively the two-dimensional case. We prove that the proposed schemes preserve fundamental structural properties like nonnegativity of the solution without restriction on the size of the mesh and entropy dissipation. Moreover, all the methods presented here are at least second order accurate in the transient regimes and arbitrarily high order for large times in the hypothesis in which the flux vanishes at the stationary state. Suitable numerical tests will confirm the theoretical results.
121 - Yingjun Jiang , Xuejun Xu 2017
We develop a monotone finite volume method for the time fractional Fokker-Planck equations and theoretically prove its unconditional stability. We show that the convergence rate of this method is order 1 in space and if the space grid becomes suffici ently fine, the convergence rate can be improved to order 2. Numerical results are given to support our theoretical findings. One characteristic of our method is that it has monotone property such that it keeps the nonnegativity of some physical variables such as density, concentration, etc.
The paper proposes a new, conservative fully-discrete scheme for the numerical solution of the regularised shallow water Boussinesq system of equations in the cases of periodic and reflective boundary conditions. The particular system is one of a cla ss of equations derived recently and can be used in practical simulations to describe the propagation of weakly nonlinear and weakly dispersive long water waves, such as tsunamis. Studies of small-amplitude long waves usually require long-time simulations in order to investigate scenarios such as the overtaking collision of two solitary waves or the propagation of transoceanic tsunamis. For long-time simulations of non-dissipative waves such as solitary waves, the preservation of the total energy by the numerical method can be crucial in the quality of the approximation. The new conservative fully-discrete method consists of a Galerkin finite element method for spatial semidiscretisation and an explicit relaxation Runge--Kutta scheme for integration in time. The Galerkin method is expressed and implemented in the framework of mixed finite element methods. The paper provides an extended experimental study of the accuracy and convergence properties of the new numerical method. The experiments reveal a new convergence pattern compared to standard Galerkin methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا