ﻻ يوجد ملخص باللغة العربية
Transport studies of atomically thin 1T-TaS2 have demonstrated the presence of intermediate resistance states across the nearly commensurate (NC) to commensurate (C) charge density wave (CDW) transition, which can be further switched electrically. While this presents exciting opportunities for the material in memristor applications, the switching mechanism has remained elusive and could be potentially attributed to the formation of inhomogeneous C and NC domains across the 1T-TaS2 flake. Here, we present simultaneous electrical driving and scanning photocurrent imaging of CDWs in ultrathin 1T-TaS2 using a vertical heterostructure geometry. While micron-sized CDW domains form upon changing temperature, electrically driven transitions result in largely uniform changes, indicating that states of intermediate resistance for the latter likely correspond to true metastable CDW states in between the NC and C phases, which we then explain by a free energy analysis. Additionally, we are able to perform repeatable and bidirectional switching across the multiple CDW states without changing sample temperature, demonstrating that atomically thin 1T-TaS2 can be further used as a robust and reversible multi-memristor material.
The layered transition metal dichalcogenides host a rich collection of charge density wave (CDW) phases in which both the conduction electrons and the atomic structure display translational symmetry breaking. Manipulating these complex states by pure
We investigate the Ti-doping effect on the charge density wave (CDW) of 1T-TaS2 by combining scanning tunneling microscopy (STM) measurements and first-principle calculations. Although the Ti-doping induced phase evolution seems regular with increasi
We report the interplay between charge-density-wave (CDW) and superconductivity of 1$T$-Fe$_{x}$Ta$_{1-x}$S$_{2}$ ($0leq x leq 0.05$) single crystals. The CDW order is gradually suppressed by Fe-doping, accompanied by the disappearance of pseudogap/M
Memristive devices whose resistance can be hysteretically switched by electric field or current are intensely pursued both for fundamental interest as well as potential applications in neuromorphic computing and phase-change memory. When the underlyi
The transition metal dichalcogenide 1T-TaS2 attract growing attention because of the formation of rich density-wave (DW) and superconducting transitions. However, the origin of the incommensurate DW state at the highest temperature (~ 550 K), which i