ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub-Kelvin Cooling for the BICEP Array Project

66   0   0.0 ( 0 )
 نشر من قبل Lorenzo Moncelsi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the field of astrophysics, the faint signal from distant galaxies and other dim cosmological sources at millimeter and submillimeter wavelengths require the use of high-sensitivity experiments. Cryogenics and the use of low-temperature detectors are essential to the accomplishment of the scientific objectives, allowing lower detector noise levels and improved instrument stability. Bolometric detectors are usually cooled to temperatures below 1K, and the constraints on the instrument are stringent, whether the experiment is a space-based platform or a ground-based telescope. The latter are usually deployed in remote and harsh environments such as the South Pole, where maintenance needs to be kept minimal. CEA-SBT has acquired a strong heritage in the development of vibration-free multistage helium-sorption coolers, which can provide cooling down to 200 mK when mounted on a cold stage at temperatures <5K. In this paper, we focus on the development of a three-stage cooler dedicated to the BICEP Array project led by Caltech/JPL, which aims to study the birth of the Universe and specifically the unique B-mode pattern imprinted by primordial gravitational waves on the polarization of the Cosmic Microwave Background. Several cryogenic receivers are being developed, each featuring one such helium-sorption cooler operated from a 4K stage cooled by a Cryomech pulse-tube with heat lifts of >1.35W at 4.2K and >36W at 45K. The major challenge of this project is the large masses to be cooled to sub-kelvin temperatures (26 kg at 250mK) and the resulting long cool-down time, which in this novel cooler design is kept to a minimum with the implementation of passive and active thermal links between different temperature stages. A first unit has been sized to provide 230, 70 and 2{mu}W of net heat lifts at the maximum temperatures of 2.8K, 340 and 250mK, respectively, for a minimum duration of 48 hours.



قيم البحث

اقرأ أيضاً

297 - S. Oguri , H. Ishitsuka , J. Choi 2014
We developed a cryogenic system on a rotating table that achieves sub-Kelvin conditions. The cryogenic system consists of a helium sorption cooler and a pulse tube cooler in a cryostat mounted on a rotating table. Two rotary-joint connectors for elec tricity and helium gas circulation enable the coolers to be operated and maintained with ease. We performed cool-down tests under a condition of continuous rotation at 20 rpm. We obtained a temperature of 0.23 K with a holding time of more than 24 hours, thus complying with catalog specifications. We monitored the systems performance for four weeks; two weeks with and without rotation. A few-percent difference in conditions was observed between these two states. Most applications can tolerate such a slight difference. The technology developed is useful for various scientific applications requiring sub-Kelvin conditions on rotating platforms.
The next generation of cosmology space missions will be sensitive to parasitic signals arising from cosmic rays. Using a composite bolometer, we have investigated pulses produced by $alpha$ particles in order to understand the movement of energy prod uced by ionising radiation. Using a series of measurements at 100 mK, we have compared the typical fitting algorithm (a mathematical model) with a second method of pulse interpretation by convolving the detectors thermal response function with a starting profile of thermalised athermal phonons, taking into account the effects of heat propagation. Using this new fitting method, we have eliminated the need for a non-physical quadratic nonlinearity factor produced using more common methods, and we find a pulse form in good agreement with known aspects of thermal physics. This work is carried forward in the effort to produce a physical model for energy deposition in this detector. The modelling is motivated by the reproduction of statistical features in the experimental dataset, and the new interpretation of $alpha$ pulse shapes represents an improvement in the current understanding of the energy propagation mechanisms in this detector.
The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne telescope mission to search for inflationary gravitational waves from the early universe. PIPER employs two 32x40 arrays of superconducting transition-edge sensors, which opera te at 100 mK. An open bucket dewar of liquid helium maintains the receiver and telescope optics at 1.7 K. We describe the thermal design of the receiver and sub-kelvin cooling with a continuous adiabatic demagnetization refrigerator (CADR). The CADR operates between 70-130 mK and provides ~10 uW cooling power at 100 mK, nearly five times the loading of the two detector assemblies. We describe electronics and software to robustly control the CADR, overall CADR performance in flight-like integrated receiver testing, and practical considerations for implementation in the balloon float environment.
The uncertainty of the ac Stark shift due to thermal radiation represents a major contribution to the systematic uncertainty budget of state-of-the-art optical atomic clocks. In the case of optical clocks based on trapped ions, the thermal behavior o f the rf-driven ion trap must be precisely known. This determination is even more difficult when scalable linear ion traps are used. Such traps enable a more advanced control of multiple ions and have become a platform for new applications in quantum metrology, simulation and computation. Nevertheless, their complex structure makes it more difficult to precisely determine its temperature in operation and thus the related systematic uncertainty. We present here scalable linear ion traps for optical clocks, which exhibit very low temperature rise under operation. We use a finite-element model refined with experimental measurements to determine the thermal distribution in the ion trap and the temperature at the position of the ions. The trap temperature is investigated at different rf-drive frequencies and amplitudes with an infrared camera and integrated temperature sensors. We show that for typical trapping parameters for $mathrm{In}^{+}$, $mathrm{Al}^{+}$, $mathrm{Lu}^{+}$, $mathrm{Ca}^{+}$, $mathrm{Sr}^{+}$ or $mathrm{Yb}^{+}$ ions, the temperature rise at the position of the ions resulting from rf heating of the trap stays below 700 mK and can be controlled with an uncertainty on the order of a few 100 mK maximum.
Cosmic microwave background (CMB) measurements are fundamentally limited by photon statistics. Therefore, ground-based CMB observatories have been increasing the number of detectors that are simultaneously observing the sky. Thanks to the advent of m onolithically fabricated transition edge sensor (TES) arrays, the number of on-sky detectors has been increasing exponentially for over a decade. The next-generation experiment CMB-S4 will increase this detector count by more than an order of magnitude from the current state-of-the-art to ~500,000. The readout of such a huge number of exquisitely precise sub-Kelvin sensors is feasible using an existing technology: frequency-domain multiplexing (fMux). To further optimize this system and reduce complexity and cost, we have recently made significant advances including the elimination of 4 K electronics, a massive decrease of parasitic in-series impedances, and a significant increase in multiplexing factor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا