ﻻ يوجد ملخص باللغة العربية
To confirm the Majorana signatures, significant effort has been devoted to distinguishing between Majorana zero modes (MZMs) and spatially separated quasi-Majorana modes (QMMs). Because both MZMs and QMMs cause a quantized zero-bias peak in the conductance measurement, their verification task is thought to be very difficult. Here, we proposed a simple device with a single nanowire, where the device could develop clear evidence of the topological Kondo effect in the topologically trivial phase with four QMMs. On the other hand, in the topological superconducting phase with MZMs, the transport signatures are significantly different. Therefore, our scheme provides a simple way to distinguish Majorana and quasi-Majorana modes.
We study the multi-channel Kondo impurity dynamics realized in a mesoscopic superconducting island connected to metallic leads. The effective impurity spin is non-locally realized by Majorana bound states and strongly coupled to lead electrons by non
We study theoretically the electrical current and low-frequency noise for a linear Josephson junction structure on a topological insulator, in which the superconductor forms a closed ring and currents are injected from normal regions inside and outsi
We consider transport properties of a hybrid device composed by a quantum dot placed between normal and superconducting reservoirs, and coupled to a Majorana nanowire: a topological superconducting segment hosting Majorana zero-modes at the opposite
The conductance measurement of a half quantized plateau in a quantum anomalous Hall insulator-superconductor structure is reported by a recent experiment [Q. L. He textit{et al.}, Science 357, 294-299 (2017)], which suggests the existence of the chir
Thermodynamic measurements of magnetic fluxes and I-V characteristics in SQUIDs offer promising paths to the characterization of topological superconducting phases. We consider the problem of macroscopic quantum tunneling in an rf-SQUID in a topologi