ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Targeting in Super-Modular Games

149   0   0.0 ( 0 )
 نشر من قبل Giacomo Como
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study an optimal targeting problem for super-modular games with binary actions and finitely many players. The considered problem consists in the selection of a subset of players of minimum size such that, when the actions of these players are forced to a controlled value while the others are left to repeatedly play a best response action, the system will converge to the greatest Nash equilibrium of the game. Our main contributions consist in showing that the problem is NP-complete and in proposing an efficient iterative algorithm with provable convergence properties for its solution. We discuss in detail the special case of network coordination games and its relation with the notion of cohesiveness. Finally, we show with simulations the strength of our approach with respect to naive heuristics based on classical network centrality measures.



قيم البحث

اقرأ أيضاً

208 - Yuanyuan Shi , Baosen Zhang 2019
This paper examines the convergence of no-regret learning in Cournot games with continuous actions. Cournot games are the essential model for many socio-economic systems, where players compete by strategically setting their output quantity. We assume that players do not have full information of the game and thus cannot pre-compute a Nash equilibrium. Two types of feedback are considered: one is bandit feedback and the other is gradient feedback. To study the convergence of the induced sequence of play, we introduce the notion of convergence in measure, and show that the players actual sequence of action converges to the unique Nash equilibrium. In addition, our results naturally extend the no-regret learning algorithms time-average regret bounds to obtain the final-iteration convergence rates. Together, our work presents significantly sharper convergence results for learning in games without strong assumptions on game property (e.g., monotonicity) and shows how exploiting the game information feedback can influence the convergence rates.
This paper considers a non-cooperative game in which competing users sharing a frequency-selective interference channel selfishly optimize their power allocation in order to improve their achievable rates. Previously, it was shown that a user having the knowledge of its opponents channel state information can make foresighted decisions and substantially improve its performance compared with the case in which it deploys the conventional iterative water-filling algorithm, which does not exploit such knowledge. This paper discusses how a foresighted user can acquire this knowledge by modeling its experienced interference as a function of its own power allocation. To characterize the outcome of the multi-user interaction, the conjectural equilibrium is introduced, and the existence of this equilibrium for the investigated water-filling game is proved. Interestingly, both the Nash equilibrium and the Stackelberg equilibrium are shown to be special cases of the generalization of conjectural equilibrium. We develop practical algorithms to form accurate beliefs and search desirable power allocation strategies. Numerical simulations indicate that a foresighted user without any a priori knowledge of its competitors private information can effectively learn the required information, and induce the entire system to an operating point that improves both its own achievable rate as well as the rates of the other participants in the water-filling game.
We study strategic games on weighted directed graphs, where the payoff of a player is defined as the sum of the weights on the edges from players who chose the same strategy augmented by a fixed non-negative bonus for picking a given strategy. These games capture the idea of coordination in the absence of globally common strategies. Prior work shows that the problem of determining the existence of a pure Nash equilibrium for these games is NP-complete already for graphs with all weights equal to one and no bonuses. However, for several classes of graphs (e.g. DAGs and cliques) pure Nash equilibria or even strong equilibria always exist and can be found by simply following a particular improvement or coalition-improvement path, respectively. In this paper we identify several natural classes of graphs for which a finite improvement or coalition-improvement path of polynomial length always exists, and, as a consequence, a Nash equilibrium or strong equilibrium in them can be found in polynomial time. We also argue that these results are optimal in the sense that in natural generalisations of these classes of graphs, a pure Nash equilibrium may not even exist.
We motivate and propose a new model for non-cooperative Markov game which considers the interactions of risk-aware players. This model characterizes the time-consistent dynamic risk from both stochastic state transitions (inherent to the game) and ra ndomized mixed strategies (due to all other players). An appropriate risk-aware equilibrium concept is proposed and the existence of such equilibria is demonstrated in stationary strategies by an application of Kakutanis fixed point theorem. We further propose a simulation-based Q-learning type algorithm for risk-aware equilibrium computation. This algorithm works with a special form of minimax risk measures which can naturally be written as saddle-point stochastic optimization problems, and covers many widely investigated risk measures. Finally, the almost sure convergence of this simulation-based algorithm to an equilibrium is demonstrated under some mild conditions. Our numerical experiments on a two player queuing game validate the properties of our model and algorithm, and demonstrate their worth and applicability in real life competitive decision-making.
We consider a dynamical approach to sequential games. By restricting the convertibility relation over strategy profiles, we obtain a semi-potential (in the sense of Kukushkin), and we show that in finite games the corresponding restriction of better- response dynamics will converge to a Nash equilibrium in quadratic time. Convergence happens on a per-player basis, and even in the presence of players with cyclic preferences, the players with acyclic preferences will stabilize. Thus, we obtain a candidate notion for rationality in the presence of irrational agents. Moreover, the restriction of convertibility can be justified by a conservative updating of beliefs about the other players strategies. For infinite sequential games we can retain convergence to a Nash equilibrium (in some sense), if the preferences are given by continuous payoff functions; or obtain a transfinite convergence if the outcome sets of the game are Delta^0_2 sets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا