ﻻ يوجد ملخص باللغة العربية
We study an optimal targeting problem for super-modular games with binary actions and finitely many players. The considered problem consists in the selection of a subset of players of minimum size such that, when the actions of these players are forced to a controlled value while the others are left to repeatedly play a best response action, the system will converge to the greatest Nash equilibrium of the game. Our main contributions consist in showing that the problem is NP-complete and in proposing an efficient iterative algorithm with provable convergence properties for its solution. We discuss in detail the special case of network coordination games and its relation with the notion of cohesiveness. Finally, we show with simulations the strength of our approach with respect to naive heuristics based on classical network centrality measures.
This paper examines the convergence of no-regret learning in Cournot games with continuous actions. Cournot games are the essential model for many socio-economic systems, where players compete by strategically setting their output quantity. We assume
This paper considers a non-cooperative game in which competing users sharing a frequency-selective interference channel selfishly optimize their power allocation in order to improve their achievable rates. Previously, it was shown that a user having
We study strategic games on weighted directed graphs, where the payoff of a player is defined as the sum of the weights on the edges from players who chose the same strategy augmented by a fixed non-negative bonus for picking a given strategy. These
We motivate and propose a new model for non-cooperative Markov game which considers the interactions of risk-aware players. This model characterizes the time-consistent dynamic risk from both stochastic state transitions (inherent to the game) and ra
We consider a dynamical approach to sequential games. By restricting the convertibility relation over strategy profiles, we obtain a semi-potential (in the sense of Kukushkin), and we show that in finite games the corresponding restriction of better-