ترغب بنشر مسار تعليمي؟ اضغط هنا

Realization of Semiconducting Layered Multiferroic Heterojunctions via Asymmetrical Magnetoelectric Coupling

133   0   0.0 ( 0 )
 نشر من قبل Baishun Yang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional (2D) semiconducting multiferroics that can effectively couple magnetic and polarization (P) orders have great interest for both fundamental research and technological applications in nanoscale, which are, however, rare in nature. In this study, we propose a general mechanism to realize semiconducting 2D multiferroics via vdW heterojunction engineering, as demonstrated in a typical heterostructure consisting of magnetic bilayer CrI3 (bi-CrI3) and ferroelectric monolayer In2Se3. Interestingly, the novel indirect orbital coupling between Se 4p and Cr 3d orbitals, intermediated by the interfacial I 5p orbitals, are switchable in the opposite P configurations, resulting in an unexpected mechanism of strong asymmetrical magnetoelectric coupling. Therefore, along with the noticeable ferroelectric energy barrier induced by In2Se3, the realization of opposite magnetic orders in opposite P configurations can eventually result in the novel multiferroicity in bi-CrI3/In2Se3. Finally, we demonstrate that our mechanism can generally be applied to design other vdW multiferroics even with tunable layer thickness.

قيم البحث

اقرأ أيضاً

Magnetic, dielectric and calorimetric studies on 0.9BiFeO3-0.1BaTiO3 indicate strong magnetoelectric coupling. XRD studies reveal a very remarkable change in the rhombohedral distortion angle and a significant shift in the atomic positions at the mag netic Tc due to an isostructural phase transition. The calculated polarization using Rietveld refined atomic positions scales linearly with magnetization. Our results provide the first unambiguous evidence for magnetoelectric coupling of intrinsic multiferroic origin in a BiFeO3 based system.
The coupling between ferroelectric and magnetic orders in multiferroic materials and the nature of magnetoelectric (ME) effects are enduring experimental challenges. In this work, we have studied the response of magnetization to ferroelectric switchi ng in thin-film hexagonal YbFeO3, a prototypical improper multiferroic. The bulk ME decoupling and potential domain-wall ME coupling were revealed using x-ray magnetic circular dichroism (XMCD) measurements with in-situ ferroelectric polarization switching. Our Landau theory analysis suggests that the bulk ME-coupled ferroelectric switching path has a higher energy barrier than that of the ME-decoupled path; this extra barrier energy is also too high to be reduced by the magneto-static energy in the process of breaking single magnetic domains into multi-domains. In addition, the reduction of magnetization around the ferroelectric domain walls predicted by the Landau theory may induce the domain-wall ME coupling in which the magnetization is correlated with the density of ferroelectric domain walls. These results provide important experimental evidence and theoretical insights into the rich possibilities of ME couplings in hexagonal ferrites, such as manipulating the magnetic states by an electric field.
Electric and magnetic properties of multiferroic GdMn2O5 in external magnetic fields were investigated to map out the magnetoelectric phases in this material. Due to strong magnetoelectric coupling, the dielectric permittivity is highly sensitive to phase boundaries in GdMn2O5, which allowed to construct the field-temperature phase diagrams. Several phase transitions are observed which are strongly field-dependent with respect to field orientation and strength. The phase diagram for a magnetic field along the crystallographic a-axis corresponds well to a polarization step, as induced by 90 degree rotation of Gd magnetic moments. Our results support the model of two ferroelectric sublattices, Mn-Mn and Gd-Mn with strong R-Mn (4f-3d) interaction for the polarization in RMn2O5.
The electronic valence state of Mn in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures is probed by near edge x-ray absorption spectroscopy as a function of the ferroelectric polarization. We observe a temperature independent shift in th e absorption edge of Mn associated with a change in valency induced by charge carrier modulation in the La0.8Sr0.2MnO3, demonstrating the electronic origin of the magnetoelectric effect. Spectroscopic, magnetic, and electric characterization shows that the large magnetoelectric response originates from a modified interfacial spin configuration, opening a new pathway to the electronic control of spin in complex oxide materials.
We report a giant linear magnetoelectric coupling in strained BiMnO3 thin films in which the disorder associated with an islanded morphology gives rise to extrinsic relaxor ferroelectricity that is not present in bulk centrosymmetric ferromagnetic cr ystalline BiMnO3. Strain associated with the disorder is treated as a local variable which couples to the two ferroic order parameters, magnetization M and polarization P. A straightforward gas under a piston thermodynamic treatment explains the observed correlated temperature dependencies of the product of susceptibilities and the magnetoelectric coefficient together with the enhancement of the coupling by the proximity of the ferroic transition temperatures close to the relaxor freezing temperature. Our interpretation is based on a trilinear coupling term in the free energy of the form L(PXM) where L is a hidden antiferromagnetic order parameter, previously postulated by theory for BiMnO3. This phenomenological invariant not only preserves inversion and time reversal symmetry of the strain-induced interactions but also explains the pronounced linear magnetoelectric coupling without using the more conventional higher order biquadratic interaction proportional to (PM)^2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا