ترغب بنشر مسار تعليمي؟ اضغط هنا

Strain-induced semiconductor to metal transition in MA2Z4 bilayers

111   0   0.0 ( 0 )
 نشر من قبل Jin Yu Dr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Very recently, a new type of two-dimensional layered material MoSi2N4 has been fabricated, which is semiconducting with weak interlayer interaction, high strength, and excellent stability. We systematically investigate theoretically the effect of vertical strain on the electronic structure of MA2Z4 (M=Ti/Cr/Mo, A=Si, Z=N/P) bilayers. Taking bilayer MoSi2N4 as an example, our first principle calculations show that its indirect band gap decreases monotonically as the vertical compressive strain increases. Under a critical strain around 22%, it undergoes a transition from semiconductor to metal. We attribute this to the opposite energy shift of states in different layers, which originates from the built-in electric field induced by the asymmetric charge transfer between two inner sublayers near the interface. Similar semiconductor to metal transitions are observed in other strained MA2Z4 bilayers, and the estimated critical pressures to realize such transitions are within the same order as semiconducting transition metal dichalcogenides. The semiconductor to metal transitions observed in the family of MA2Z4 bilayers present interesting possibilities for strain-induced engineering of their electronic properties.

قيم البحث

اقرأ أيضاً

Moderate amount of bending strains, ~3% are enough to induce the semiconductor-metal transition in Si nanowires of ~4nm diameter. The influence of bending on silicon nanowires of 1 nm to 4.3 nm diameter is investigated using molecular dynamics and qu antum transport simulations. Local strains in nanowires are analyzed along with the effect of bending strain and nanowire diameter on electronic transport and the transmission energy gap. Interestingly, relatively wider nanowires are found to undergo semiconductor-metal transition at relatively lower bending strains. The effect of bending strain on electronic properties is then compared with the conventional way of straining, i.e. uniaxial, which shows that, the bending is much more efficient way of straining to enhance the electronic transport and also to induce the semiconductor-metal transition in experimentally realizable Si nanowires.
74 - Y. Zhang , J. J. Gong , C. F. Li 2019
LiOsO3 is the first experimentally confirmed polar metal. Previous works suggested that the ground state of LiOsO$_3$ is just close to the critical point of metal-insulator transition. In this work the electronic state of LiOsO$_3$ is tuned by epitax ial biaxial strain, which undergoes the Slater-type metal-insulator transition under tensile strain, i.e., the G-type antiferromagnetism emerges. The underlying mechanism of bandwidth tuning can be extended to its sister compound NaOsO$_3$, which shows an opposite transition from a antiferromagnetic insulator to a nonmagnetic metal under hydrostatic pressure. Our work suggests a feasible route for the manipulation of magnetism and conductivity of polar metal LiOsO$_3$.
250 - Satoshi Okamoto , Di Xiao 2017
Correlated electron systems on a honeycomb lattice have emerged as a fertile playground to explore exotic electronic phenomena. Theoretical and experimental work has appeared to realize novel behavior, including quantum Hall effects and valleytronics , mainly focusing on van der Waals compounds, such as graphene, chalcogenides, and halides. In this article, we review our theoretical study on perovskite transition-metal oxides (TMOs) as an alternative system to realize such exotic phenomena. We demonstrate that novel quantum Hall effects and related phenomena associated with the honeycomb structure could be artificially designed by such TMOs by growing their heterostructures along the [111] crystallographic axis. One of the important predictions is that such TMO heterostructures could support two-dimensional topological insulating states. The strong correlation effects inherent to TM $d$ electrons further enrich the behavior.
74 - C. Mariette 2020
Thanks to the remarkable developments of ultrafast science, one of todays challenges is to modify material state by controlling with a light pulse the coherent motions that connect two different phases. Here we show how strain waves, launched by elec tronic and structural precursor phenomena, determine a macroscopic transformation pathway for the semiconducting-to-metal transition with large volume change in bistable Ti$_3$O$_5$ nanocrystals. Femtosecond powder X-ray diffraction allowed us to quantify the structural deformations associated with the photoinduced phase transition on relevant time scales. We monitored the early intra-cell distortions around absorbing metal dimers, but also long range crystalline deformations dynamically governed by acoustic waves launched at the laser-exposed Ti$_3$O$_5$ surface. We rationalize these observations with a simplified elastic model, demonstrating that a macroscopic transformation occurs concomitantly with the propagating acoustic wavefront on the picosecond timescale, several decades earlier than the subsequent thermal processes governed by heat diffusion.
By means of the first-principles calculations combined with the tight-binding approximation, the strain-induced semiconductor-semimetal transition in graphdiyne is discovered. It is shown that the band gap of graphdiyne increases from 0.47 eV to 1.39 eV with increasing the biaxial tensile strain, while the band gap decreases from 0.47 eV to nearly zero with increasing the uniaxial tensile strain, and Dirac cone-like electronic structures are observed. The uniaxial strain-induced changes of the electronic structures of graphdiyne come from the breaking of geometrical symmetry that lifts the degeneracy of energy bands. The properties of graphdiyne under strains are disclosed different remarkably from that of graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا