ترغب بنشر مسار تعليمي؟ اضغط هنا

Pretty Good Phone Privacy

60   0   0.0 ( 0 )
 نشر من قبل Paul Schmitt
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

To receive service in todays cellular architecture, phones uniquely identify themselves to towers and thus to operators. This is now a cause of major privacy violations, as operators now sell and leak identity and location data of hundreds of millions of mobile users. In this paper, we take an end-to-end perspective on the cellular architecture and find key points of decoupling that enable us to protect user identity and location privacy with no changes to physical infrastructure, no added latency, and no requirement of direct cooperation from existing operators. We describe Pretty Good Phone Privacy (PGPP) and demonstrate how our modified backend stack (NGC) works with real phones to provide ordinary yet privacy-preserving connectivity. We explore inherent privacy and efficiency tradeoffs in a simulation of a large metropolitan region. We show how PGPP maintains todays control overheads while significantly improving user identity and location privacy.



قيم البحث

اقرأ أيضاً

47 - M. B. Hastings 2019
We consider classical and quantum algorithms which have a duality property: roughly, either the algorithm provides some nontrivial improvement over random or there exist many solutions which are significantly worse than random. This enables one to gi ve guarantees that the algorithm will find such a nontrivial improvement: if few solutions exist which are much worse than random, then a nontrivial improvement is guaranteed. The quantum algorithm is based on a sudden of a Hamiltonian; while the algorithm is general, we analyze it in the specific context of MAX-$K$-LIN$2$, for both even and odd $K$. The classical algorithm is a dequantization of this algorithm, obtaining the same guarantee (indeed, some results which are only conjectured in the quantum case can be proven here); however, the quantum point of view helps in analyzing the performance of the classical algorithm and might in some cases perform better.
104 - Daniel Tang 2020
Many countries are currently gearing up to use smart-phone apps to perform contact tracing as part of the effort to manage the COVID-19 pandemic and prevent resurgences of the disease after the initial outbreak. With the announcement of the Apple/Goo gle partnership to introduce contact-tracing functionality to iOS and Android, it seems likely that this will be adopted in many countries. An important part of the functionality of the app will be to decide whether a person should be advised to self-isolate, be tested or end isolation. However, the privacy preserving nature of the Apple/Google contact tracing algorithm means that centralised curation of these decisions is not possible so each phone must use its own risk model to inform decisions. Ideally, the risk model should use Bayesian inference to decide the best course of action given the test results of the user and those of other users. Here we present a decentralised algorithm that estimates the Bayesian posterior probability of viral transmission events and evaluates when a user should be notified, tested or released from isolation while preserving user privacy. The algorithm also allows the disease models on the phones to learn from everyones contact-tracing data and will allow Epidemiologists to better understand the dynamics of the disease. The algorithm is a message passing algorithm, based on belief propagation, so each smart-phone can be used to execute a small part of the algorithm without releasing any sensitive information. In this way, the network of all participating smart-phones forms a distributed computation device that performs Bayesian inference, informs each user when they should start/end isolation or be tested and learns about the disease from users data.
Virtually every Internet communication typically involves a Domain Name System (DNS) lookup for the destination server that the client wants to communicate with. Operators of DNS recursive resolvers---the machines that receive a clients query for a d omain name and resolve it to a corresponding IP address---can learn significant information about client activity. Past work, for example, indicates that DNS queries reveal information ranging from web browsing activity to the types of devices that a user has in their home. Recognizing the privacy vulnerabilities associated with DNS queries, various third parties have created alternate DNS services that obscure a users DNS queries from his or her Internet service provider. Yet, these systems merely transfer trust to a different third party. We argue that no single party ought to be able to associate DNS queries with a client IP address that issues those queries. To this end, we present Oblivious DNS (ODNS), which introduces an additional layer of obfuscation between clients and their queries. To do so, ODNS uses its own authoritative namespace; the authoritative servers for the ODNS namespace act as recursive resolvers for the DNS queries that they receive, but they never see the IP addresses for the clients that initiated these queries. We present an initial deployment of ODNS; our experiments show that ODNS introduces minimal performance overhead, both for individual queries and for web page loads. We design ODNS to be compatible with existing DNS protocols and infrastructure, and we are actively working on an open standard with the IETF.
Distributed Virtual Private Networks (dVPNs) are new VPN solutions aiming to solve the trust-privacy concern of a VPNs central authority by leveraging a distributed architecture. In this paper, we first review the existing dVPN ecosystem and debate o n its privacy requirements. Then, we present VPN0, a dVPN with strong privacy guarantees and minimal performance impact on its users. VPN0 guarantees that a dVPN node only carries traffic it has whitelisted, without revealing its whitelist or knowing the traffic it tunnels. This is achieved via three main innovations. First, an attestation mechanism which leverages TLS to certify a user visit to a specific domain. Second, a zero knowledge proof to certify that some incoming traffic is authorized, e.g., falls in a nodes whitelist, without disclosing the target domain. Third, a dynamic chain of VPN tunnels to both increase privacy and guarantee service continuation while traffic certification is in place. The paper demonstrates VPN0 functioning when integrated with several production systems, namely BitTorrent DHT and ProtonVPN.
The rapid growth in distributed energy sources on power grids leads to increasingly decentralised energy management systems for the prediction of power supply and demand and the dynamic setting of an energy price signal. Within this emerging smart gr id paradigm, electric vehicles can serve as consumers, transporters, and providers of energy through two-way charging stations, which highlights a critical feedback loop between the movement patterns of these vehicles and the state of the energy grid. This paper proposes a vision for an Internet of Mobile Energy (IoME), where energy and information flow seamlessly across the power and transport sectors to enhance the grid stability and end user welfare. We identify the key challenges of trust, scalability, and privacy, particularly location and energy linking privacy for EV owners, for realising the IoME vision. We propose an information architecture for IoME that uses scalable blockchain to provide energy data integrity and authenticity, and introduces one-time keys for public EV transactions and a verifiable anonymous trip extraction method for EV users to share their trip data while protecting their location privacy. We present an example scenario that details the seamless and closed loop information flow across the energy and transport sectors, along with a blockchain design and transaction vocabulary for trusted decentralised transactions. We finally discuss the open challenges presented by IoME that can unlock significant benefits to grid stability, innovation, and end user welfare.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا