ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-orbital degeneracy lifted state as a local precursor to a metal-insulator transition

101   0   0.0 ( 0 )
 نشر من قبل Long Yang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent discovery of a local fluctuating t2g orbital-degeneracy-lifted (ODL) state in CuIr2S4 as a high temperature precursor to the metal-insulator transition (MIT) opens the door to a possible widespread presence of precursor states in scarcely studied high-temperature regimes of transition metal based quantum materials. Although in CuIr2S4 the ODL state comprises one orbital per Ir, there is no fundamental reason to exclude multi-orbital ODL states in general. The MgTi2O4 spinel exhibits a MIT on cooling at Ts ~250 K, accompanied by Ti t2g orbital ordering (OO) and spin dimerization with the average symmetry reducing to tetragonal. It shares with CuIr2S4 the pyrochlore transition metal sublattice with active t2g orbitals. This, together with its different orbital filling (t2g1 vs t2g5.5) make it a candidate for hosting a multi-orbital ODL precursor state. By combining x-ray and neutron pair distribution function analyses to track the evolution of the local atomic structure across the MIT we find that local tetragonality already exists in the metallic globally cubic phase at high temperature. Local distortions exist up to at least 500 K. Significantly, the high temperature local state is not continuously connected to the OO band insulator ground state, and so the transition cannot be characterized as a trivial order-disorder type. The shortest Ti-Ti spin singlet dimer bonds expand abruptly on warming across the transition but remain shorter than those seen in the cubic structure. These seemingly contradictory observations can be understood within the model of a local fluctuating two-orbital t2g ODL precursor state. The ODL state in MgTi2O4 has a correlation length of about 1 nm at high temperature. We discuss that this extended character of the local distortions is consistent with the two-orbital nature of the ODL state imposed by the charge filling and the bond charge repulsion.



قيم البحث

اقرأ أيضاً

97 - S. Ito , M. Arita , J. Haruyama 2019
The emergence of quantization at the nanoscale, the quantum size effect (QSE), allows flexible control of matter and is a rich source of advanced functionalities. A QSE-induced transition into an insulating phase in semimetallic nanofilms was predict ed for bismuth a half-century ago and has regained new interest with regard to its surface states exhibiting nontrivial electronic topology. Here, we reveal an unexpected mechanism of the transition by high-resolution angle-resolved photoelectron spectroscopy combined with theoretical calculations. Anomalous evolution and degeneracy of quantized energy levels indicate that increased Coulomb repulsion from the surface states deforms a quantum confinement potential with decreasing thickness. The potential deformation drastically modulates spatial distributions of quantized wave functions, which leads to acceleration of the transition even beyond the original QSE picture. This discovery establishes a complete picture of the long-discussed problem in bismuth and highlights the new class of size effects dominating nanoscale transport in systems with metallic surface states.
Phase transitions driven by ultrashort laser pulses have attracted interest both for understanding the fundamental physics of phase transitions and for potential new data storage or device applications. In many cases these transitions involve transie nt states that are different from those seen in equilibrium. To understand the microscopic properties of these states, it is useful to develop elementally selective probing techniques that operate in the time domain. Here we show fs-time-resolved measurements of V Ledge Resonant Inelastic X-Ray Scattering (RIXS) from the insulating phase of the Mott- Hubbard material V2O3 after ultrafast laser excitation. The probed orbital excitations within the d-shell of the V ion show a sub-ps time response, which evolve at later times to a state that appears electronically indistinguishable from the high-temperature metallic state. Our results demonstrate the potential for RIXS spectroscopy to study the ultrafast orbital dynamics in strongly correlated materials.
We observe an insulator-to-metal (I-M) transition in crystalline silicon doped with sulfur to non- equilibrium concentrations using ion implantation followed by pulsed laser melting and rapid resolidification. This I-M transition is due to a dopant k nown to produce only deep levels at equilibrium concentrations. Temperature-dependent conductivity and Hall effect measurements for temperatures T > 1.7 K both indicate that a transition from insulating to metallic conduction occurs at a sulfur concentration between 1.8 and 4.3 x 10^20 cm-3. Conduction in insulating samples is consistent with variable range hopping with a Coulomb gap. The capacity for deep states to effect metallic conduction by delocalization is the only known route to bulk intermediate band photovoltaics in silicon.
169 - Yuanping Chen , Y.Y. Sun , H. Wang 2015
A three-dimensional elemental carbon Kagome lattice (CKL), made of only fourfold coordinated carbon atoms, is proposed based on first-principles calculations. Despite the existence of 60{deg} bond angles in the triangle rings, widely perceived to be energetically unfavorable, the CKL is found to display exceptional stability comparable to that of C60. The system allows us to study the effects of triangular frustration on the electronic properties of realistic solids, and it demonstrates a metal-insulator transition from that of graphene to a direct gap semiconductor in the visible blue region. By minimizing s-p orbital hybridization, which is an intrinsic property of carbon, not only the band edge states become nearly purely frustrated p states, but also the band structure is qualitatively different from any known bulk elemental semiconductors. For example, the optical properties are similar to those of direct-gap semiconductors GaN and ZnO, whereas the effective masses are comparable or smaller than those of Si.
309 - W. X. Zhou , H. J. Wu , J. Zhou 2020
Integrating multiple properties in a single system is crucial for the continuous developments in electronic devices. However, some physical properties are mutually exclusive in nature. Here, we report the coexistence of two seemingly mutually exclusi ve properties-polarity and two-dimensional conductivity-in ferroelectric Ba$_{0.2}$Sr$_{0.8}$TiO$_3$ thin films at the LaAlO$_3$/Ba$_{0.2}$Sr$_{0.8}$TiO$_3$ interface at room temperature. The polarity of a ~3.2 nm Ba$_{0.2}$Sr$_{0.8}$TiO$_3$ thin film is preserved with a two-dimensional mobile carrier density of ~0.05 electron per unit cell. We show that the electronic reconstruction resulting from the competition between the built-in electric field of LaAlO$_3$ and the polarization of Ba$_{0.2}$Sr$_{0.8}$TiO$_3$ is responsible for this unusual two-dimensional conducting polar phase. The general concept of exploiting mutually exclusive properties at oxide interfaces via electronic reconstruction may be applicable to other strongly-correlated oxide interfaces, thus opening windows to new functional nanoscale materials for applications in novel nanoelectronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا