ترغب بنشر مسار تعليمي؟ اضغط هنا

Mapping the H$_{2}$D$^{+}$ and N$_{2}$H$^{+}$ emission towards prestellar cores. Testing dynamical models of the collapse using gas tracers

131   0   0.0 ( 0 )
 نشر من قبل Evgenia Koumpia
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The study of prestellar cores is critical as they set the initial conditions in star formation and determine the final mass of the stellar object. To date, several hypotheses are describing their gravitational collapse. We perform detailed line analysis and modelling of H$_{2}$D$^{+}$ 110 -111 and N$_{2}$H$^{+}$ 4-3 emission at 372 GHz, using 2x2 maps (JCMT). Our goal is to test the most prominent dynamical models by comparing the modelled gas kinematics and spatial distribution (H$_{2}$D$^{+}$ and N$_{2}$H$^{+}$) with observations towards four prestellar (L1544, L183, L694-2, L1517B) and one protostellar core (L1521f). We perform a detailed non-LTE radiative transfer modelling using RATRAN, where we compare the predicted spatial distribution and line profiles of H$_{2}$D$^{+}$ and N$_{2}$H$^{+}$ with observations towards all cores. To do so, we adopt the physical structure for each core predicted by three different dynamical models taken from literature: Quasi-Equilibrium Bonnor-Ebert Sphere (QE-BES), Singular Isothermal Sphere (SIS), and Larson-Penston (LP) flow. Our analysis provides an updated picture of the physical structure of prestellar cores. We find that the SIS model can be clearly excluded in explaining the gas emission towards the cores, but a larger sample is required to differentiate clearly between the LP flow, the QE-BES and the static models. All models of collapse underestimate the intensity of the gas emission by up to several factors towards the only protostellar core in our sample, indicating that different dynamics take place in different evolutionary core stages. If the LP model is confirmed towards a larger sample of prestellar cores, it would indicate that they may form by compression or accretion of gas from larger scales. If the QE-BES model is confirmed, it means that quasi hydrostatic cores can exist within turbulent ISM.

قيم البحث

اقرأ أيضاً

Using our deep optical and near-infrared photometry along with multiwavelength archival data, we here present a detailed study of the Galactic H II region Sh 2-305, to understand the star/star-cluster formation. On the basis of excess infra-red emiss ion, we have identified 116 young stellar objects (YSOs) within a field of view of ~ 18.5 arcminute x 18.5 arcminute, around Sh 2-305. The average age, mass and extinction (A_V) for this sample of YSOs are 1.8 Myr, 2.9 solar mass and 7.1 mag, respectively. The density distribution of stellar sources along with minimal spanning tree calculations on the location of YSOs reveals at least three stellar sub-clusterings in Sh 2-305. One cluster is seen toward the center (i.e., Mayer 3), while the other two are distributed toward the north and south directions. Two massive O-type stars (VM2 and VM4; ages ~ 5 Myr) are located at the center of the Sh 2-305 H II region. The analysis of the infrared and radio maps traces the photon dominant regions (PDRs) in the Sh 2-305. Association of younger generation of stars with the PDRs is also investigated in the Sh 2-305. This result suggests that these two massive stars might have influenced the star formation history in the Sh 2-305. This argument is also supported with the calculation of various pressures driven by massive stars, slope of mass function/K-band luminosity function, star formation efficiency, fraction of Class I sources, and mass of the dense gas toward the sub-clusterings in the Sh 2-305.
347 - Xuan Fang , Yong Zhang , Sun Kwok 2018
We present narrow-band near-infrared images of a sample of 11 Galactic planetary nebulae (PNe) obtained in the molecular hydrogen (H$_{2}$) 2.122 $mu$m and Br$gamma$ 2.166 $mu$m emission lines and the $K_{rm c}$ 2.218 $mu$m continuum. These images we re collected with the Wide-field InfraRed Camera (WIRCam) on the 3.6m Canada-France-Hawaii Telescope (CFHT); their unprecedented depth and wide field of view allow us to find extended nebular structures in H$_{2}$ emission in several PNe, some of these being the first detection. The nebular morphologies in H$_{2}$ emission are studied in analogy with the optical images, and indication on stellar wind interactions is discussed. In particular, the complete structure of the highly asymmetric halo in NGC6772 is witnessed in H$_{2}$, which strongly suggests interaction with the interstellar medium. Our sample confirms the general correlation between H$_{2}$ emission and the bipolarity of PNe. The knotty/filamentary fine structures of the H$_{2}$ gas are resolved in the inner regions of several ring-like PNe, also confirming the previous argument that H2 emission mostly comes from knots/clumps embedded within fully ionized material at the equatorial regions. Moreover, the deep H$_{2}$ image of the butterfly-shaped Sh1-89, after removal of field stars, clearly reveals a tilted ring structure at the waist. These high-quality CFHT images justify follow-up detailed morpho-kinematic studies that are desired to deduce the true physical structures of a few PNe in the sample.
Young massive stars are usually found embedded in dense and massive molecular clumps and are known for being highly obscured and distant. During their formation process, deuteration is regarded as a potentially good indicator of the formation stage. Therefore, proper observations of such deuterated molecules are crucial, but still, hard to perform. In this work, we test the observability of the transition o-H$_2$D$^+(1_{10}$-$1_{11})$, using a synthetic source, to understand how the physical characteristics are reflected in observations through interferometers and single-dish telescopes. In order to perform such tests, we post-processed a magneto-hydrodynamic simulation of a collapsing magnetized core using the radiative transfer code POLARIS. Using the resulting intensity distributions as input, we performed single-dish (APEX) and interferometric (ALMA) synthetic observations at different evolutionary times, always mimicking realistic configurations. Finally, column densities were derived to compare our simulations with real observations previously performed. Our derivations for o-H$_2$D$^+$ are in agreement with values reported in the literature, in the range of 10$^{!10-11}$cm$^{!-2}$ and 10$^{!12-13}$cm$^{!-2}$ for single-dish and interferometric measurements, respectively.
Deuterated molecules are important chemical tracers of prestellar and protostellar cores. Up to now, the titular reaction has been assumed to contribute to the generation of these deuterated molecules. We have measured the merged-beams rate coefficie nt for this reaction as function of the relative collision energy in the range of about 10 meV to 10 eV. By varying the internal temperature of the reacting H$_3^+$ molecules, we found indications for the existence of a reaction barrier. We have performed detailed theoretical calculations for the zero-point-corrected energy profile of the reaction and determined a new value for the barrier height of $approx$ 68 meV. Furthermore, we have calculated the tunneling probability through the barrier. Our experimental and theoretical results show that the reaction is essentially closed at astrochemically relevant temperatures. We derive a thermal rate coefficient of $<1times 10^{-12}$ cm$^3$ s$^{-1}$ for temperatures below 75 K with tunneling effects included and below 155 K without tunneling.
285 - L. Colzi , F. Fontani , P. Caselli 2019
Nitrogen (N) fractionation is used as a tool to search for a link between the chemical history of the Solar System and star-forming regions. A large variation of $^{14}$N/$^{15}$N is observed towards different astrophysical sources, and current chemi cal models cannot reproduce it. With the advent of high angular resolution radiotelescopes it is now possible to search for N-fractionation at core scales. We present IRAM NOEMA observations of the J=1-0 transition of N$_{2}$H$^{+}$, $^{15}$NNH$^{+}$ and N$^{15}$NNH$^{+}$ towards the high-mass protocluster IRAS 05358+3543. We find $^{14}$N/$^{15}$N ratios that span from $sim$100 up to $sim$220 and these values are lower or equal than those observed with single-dish observations towards the same source. Since N-fractionation changes across the studied region, this means that it is regulated by local environmental effects. We find also the possibility, for one of the four cores defined in the protocluster, to have a more abundant $^{15}$NNH$^{+}$ with respect to N$^{15}$NNH$^{+}$. This is another indication that current chemical models may be missing chemical reactions or may not take into account other mechanisms, like photodissociation or grain surface chemistry, that could be important.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا