ترغب بنشر مسار تعليمي؟ اضغط هنا

Heavy Positive Ion Groups in Titans Ionosphere from Cassini Plasma Spectrometer IBS Observations

67   0   0.0 ( 0 )
 نشر من قبل Richard Haythornthwaite
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Titans ionosphere contains a plethora of hydrocarbons and nitrile cations and anions as measured by the Ion Neutral Mass Spectrometer and Cassini Plasma Spectrometer (CAPS) onboard the Cassini spacecraft. Data from the CAPS Ion Beam Spectrometer (IBS) sensor have been examined for five close encounters of Titan during 2009. The high relative velocity of Cassini with respect to the cold ions in Titans ionosphere allows CAPS IBS to function as a mass spectrometer. Positive ion masses between 170 and 310 u/q are examined with ion mass groups identified between 170 and 275 u/q containing between 14 and 21 heavy (carbon/nitrogen/oxygen) atoms. These groups are the heaviest positive ion groups reported so far from the available in situ ion data at Titan. The ion group peaks are found to be consistent with masses associated with Polycyclic Aromatic Compounds (PAC), including Polycyclic Aromatic Hydrocarbon (PAH) and nitrogen-bearing polycyclic aromatic molecular ions. The ion group peak identifications are compared with previously proposed neutral PAHs and are found to be at similar masses, supporting a PAH interpretation. The spacing between the ion group peaks is also investigated, finding a spacing of 12 or 13 u/q indicating the addition of C or CH. Lastly, the occurrence of several ion groups is seen to vary across the five flybys studied, possibly relating to the varying solar radiation conditions observed across the flybys. These findings further the understanding between the low mass ions and the high mass negative ions, as well as with aerosol formation in Titans atmosphere.

قيم البحث

اقرأ أيضاً

The ionosphere of Titan hosts a complex ion chemistry leading to the formation of organic dust below 1200 km. Current models cannot fully explain the observed electron temperature in this dusty environment. To achieve new insight, we have re-analyzed the data taken in the ionosphere of Titan by the Cassini Langmuir probe (LP), part of the Radio and Plasma Wave Science package. A first paper (Chatain et al., 2021) introduces the new analysis method and discusses the identification of 4 electron populations produced by different ionization mechanisms. In this second paper, we present a statistical study of the whole LP dataset below 1200 km which gives clues on the origin of the 4 populations. One small population is attributed to photo- or secondary electrons emitted from the surface of the probe boom. A second population is systematically observed, at a constant density (~500 cm-3), and is attributed to background thermalized electrons from the ionization process of precipitating particles fom the surrounding magnetosphere. The two last populations increase in density with pressure, solar illumination and EUV flux. The third population is observed with varying densities at all altitudes and solar zenith angles except on the far nightside (SZA > ~140{deg}), with a maximum density of 2700 cm-3. It is therefore certainly related to the photo-ionization of the atmospheric molecules. Finally, a fourth population detected only on the dayside and below 1200 km reaching up to 2000 cm-3 could be photo- or thermo-emitted from dust grains.
Current models of Titan ionosphere have difficulties in explaining the observed electron density and/or temperature. In order to get new insights, we re-analyzed the data taken in the ionosphere of Titan by the Cassini Langmuir probe (LP), part of th e Radio and Plasma Wave Science (RPWS) instrument. This is the first of two papers that present the new analysis method (current paper) and statistics on the whole dataset. We suggest that between 2 and 4 electron populations are necessary to fit the data. Each population is defined by a potential, an electron density and an electron temperature and is easily visualized by a dinstinct peak in the second derivative of the electron current, which is physically related to the electron energy distribution function (Druyvesteyn method). The detected populations vary with solar illumination and altitude. We suggest that the 4 electron populations are due to photo-ionization, magnetospheric particles, dusty plasma and electron emission from the probe boom, respectively.
A significant difference in Titans ionospheric electron density is observed between the T118 and T119 Cassini nightside flybys. These flybys had similar geometry, occurred at the same Saturn local time and while Titan was exposed to similar EUV and a mbient magnetic field conditions. Despite these similarities, the RPWS/LP measured density differed a factor of 5 between the passes. This difference was present, and similar, both inbound and outbound. Two distinct electron peaks were present during T118, at 1150 km and 1200 km, suggesting very localised plasma production. During T118, from 1200-1350 km and below 1100 km, the lowest electron density ever observed in Titans ionosphere are reported. We suggest that an exceptionally low rate of particle impact ionisation in combination with increased dynamics in the ionosphere could be the cause. This is, however, not verified by measurements and the measured ambient high energy particle pressure is in fact higher during T118 than during T119.
The magnetospheric cusps are important sites of the coupling of a magnetosphere with the solar wind. The combination of both ground- and space-based observations at Earth have enabled considerable progress to be made in understanding the terrestrial cusp and its role in the coupling of the magnetosphere to the solar wind via the polar magnetosphere. Voyager 2 fully explored Neptunes cusp in 1989 but highly inclined orbits of the Cassini spacecraft at Saturn present the most recent opportunity to repeatedly studying the polar magnetosphere of a rapidly rotating planet. In this paper we discuss observations made by Cassini during two passes through Saturns southern polar magnetosphere. Our main findings are that i) Cassini directly encounters the southern polar cusp with evidence for the entry of magnetosheath plasma into the cusp via magnetopause reconnection, ii) magnetopause reconnection and entry of plasma into the cusp can occur over a range of solar wind conditions, and iii) double cusp morphologies are consistent with the position of the cusp oscillating in phase with Saturns global magnetospheric periodicities.
Magnetic reconnection is a fundamental process in solar system and astrophysical plasmas, through which stored magnetic energy associated with current sheets is converted into thermal, kinetic and wave energy. Magnetic reconnection is also thought to be a key process involved in shedding internally produced plasma from the giant magnetospheres at Jupiter and Saturn through topological reconfiguration of the magnetic field. The region where magnetic fields reconnect is known as the diffusion region and in this letter we report on the first encounter of the Cassini spacecraft with a diffusion region in Saturns magnetotail. The data also show evidence of magnetic reconnection over a period of 19 h revealing that reconnection can, in fact, act for prolonged intervals in a rapidly rotating magnetosphere. We show that reconnection can be a significant pathway for internal plasma loss at Saturn. This counters the view of reconnection as a transient method of internal plasma loss at Saturn. These results, although directly relating to the magnetosphere of Saturn, have applications in the understanding of other rapidly rotating magnetospheres, including that of Jupiter and other astrophysical bodies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا