ترغب بنشر مسار تعليمي؟ اضغط هنا

Tail-states induced semiconductor-toconductor like transition under sub-bandgap light excitation in the zinc-tin-oxide photothinfilm transistors

70   0   0.0 ( 0 )
 نشر من قبل Soumen Dhara PhD
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a giant persistent photoconductivity (PPC) induced semiconductor-to-conductor like transition in zinc-tin-oxide (ZTO) photo-thinfilm transistors (TFT). The active ZTO channel layer was prepared by remote-plasma reactive sputtering and possesses an amorphous structure. Under subbandgap excitation of ZTO with UV light, the photocurrent reaches as high as ~10 -4 A (a photo-to-dark current ratio of ~10 7) and remains close to this high value after switching off the light. During this time, the ZTO TFT exhibits gigantic PPC with long-lasting recovery time, which leads the ZTO compound to undergo a semiconductor-to-conductor like transition. In the present case, the conductivity changes over six orders of magnitude, from ~10-7 to 0.92 {Omega} -1cm-1. After UV exposure, the ZTO compound can potentially remain in the conducting state for up to a month. The underlying physics of the observed PPC effect is investigated by studying defects (deep-states and tail-states) by employing a discharge current analysis (DCA) technique. Findings from the DCA study reveal direct evidence for the involvement of sub-gap tail-states of the ZTO in the giant PPC, while deep-states contribute to mild PPC.



قيم البحث

اقرأ أيضاً

A pressure-induced phase transition, associated with an increase of the coordination number of In and Ta, is detected beyond 13 GPa in InTaO4 by combining synchrotron x-ray diffraction and Raman measurements in a diamond anvil cell with ab-initio cal culations. High-pressure optical-absorption measurements were also carried out. The high-pressure phase has a monoclinic structure which shares the same space group with the low-pressure phase (P2/c). The structure of the high-pressure phase can be considered as a slight distortion of an orthorhombic structure described by space group Pcna. The phase transition occurs together with a unit-cell volume collapse and an electronic bandgap collapse observed by experiments and calculations. Additionally, a band crossing is found to occur in the low-pressure phase near 7 GPa. The pressure dependence of all the Raman-active modes is reported for both phases as well as the pressure dependence of unit-cell parameters and the equations of state. Calculations also provide information on IR-active phonons and bond distances. These findings provide insights into the effects of pressure on the physical properties of InTaO4.
Recent development of ultrashort laser pulses allows for optical control of structural and electronic properties of complex quantum materials. The layered transition metal dichalcogenide MoTe2, which can crystalize into several different structures w ith distinct topological and electronic properties, provides possibilities to control or switch between different phases. In this study we report a photo-induced sub-picosecond structural transition between the type-II Weyl semimetal phase and normal semimetal phase in bulk crystalline MoTe2 by using ultrafast pump-probe and time-resolved second harmonic generation spectroscopy. The phase transition is most clearly characterized by the dramatic change of the shear oscillation mode and the intensity loss of second harmonic generation. This work opens up new possibilities for ultrafast manipulation of the topological properties of solids, enabling potentially practical applications for topological switch device with ultrafast excitations.
63 - H. C. Schneider , W. W. Chow , 2003
A quantum kinetic theory is used to compute excitation induced dephasing in semiconductor quantum dots due to the Coulomb interaction with a continuum of states, such as a quantum well or a wetting layer. It is shown that a frequency dependent broade ning together with nonlinear resonance shifts are needed for a microscopic explanation of the excitation induced dephasing in such a system, and that excitation induced dephasing for a quantum-dot excitonic resonance is different from quantum-well and bulk excitons.
By means of the first-principles calculations combined with the tight-binding approximation, the strain-induced semiconductor-semimetal transition in graphdiyne is discovered. It is shown that the band gap of graphdiyne increases from 0.47 eV to 1.39 eV with increasing the biaxial tensile strain, while the band gap decreases from 0.47 eV to nearly zero with increasing the uniaxial tensile strain, and Dirac cone-like electronic structures are observed. The uniaxial strain-induced changes of the electronic structures of graphdiyne come from the breaking of geometrical symmetry that lifts the degeneracy of energy bands. The properties of graphdiyne under strains are disclosed different remarkably from that of graphene.
We present a detailed study of the emergence of bulk ferromagnetism in low carrier density samples of undoped indium tin oxide (ITO). We used annealing to increase the density of oxygen vacancies and change sample morphology without introducing impur ities through the metal insulator transition (MIT). We utilized a novel and highly sensitive Corbino-disk torque magnetometry technique to simultaneously measure the thermodynamic and transport effects of magnetism on the same sample after successive annealing. With increased sample granularity, carrier density increased, the sample became more metallic, and ferromagnetism appeared as resistance approached the MIT. Ferromagnetism was observed through the detection of magnetization hysteresis, anomalous Hall effect (AHE), and hysteretic magnetoresistance. A sign change of the AHE as the MIT is approached may elucidate the interplay between the impurity band and the conduction band in the weakly insulating side of the MIT.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا