ترغب بنشر مسار تعليمي؟ اضغط هنا

Conditional Image Generation with One-Vs-All Classifier

84   0   0.0 ( 0 )
 نشر من قبل XiangRui Xu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper explores conditional image generation with a One-Vs-All classifier based on the Generative Adversarial Networks (GANs). Instead of the real/fake discriminator used in vanilla GANs, we propose to extend the discriminator to a One-Vs-All classifier (GAN-OVA) that can distinguish each input data to its category label. Specifically, we feed certain additional information as conditions to the generator and take the discriminator as a One-Vs-All classifier to identify each conditional category. Our model can be applied to different divergence or distances used to define the objective function, such as Jensen-Shannon divergence and Earth-Mover (or called Wasserstein-1) distance. We evaluate GAN-OVAs on MNIST and CelebA-HQ datasets, and the experimental results show that GAN-OVAs make progress toward stable training over regular conditional GANs. Furthermore, GAN-OVAs effectively accelerate the generation process of different classes and improves generation quality.



قيم البحث

اقرأ أيضاً

Traditional convolution-based generative adversarial networks synthesize images based on hierarchical local operations, where long-range dependency relation is implicitly modeled with a Markov chain. It is still not sufficient for categories with com plicated structures. In this paper, we characterize long-range dependence with attentive normalization (AN), which is an extension to traditional instance normalization. Specifically, the input feature map is softly divided into several regions based on its internal semantic similarity, which are respectively normalized. It enhances consistency between distant regions with semantic correspondence. Compared with self-attention GAN, our attentive normalization does not need to measure the correlation of all locations, and thus can be directly applied to large-size feature maps without much computational burden. Extensive experiments on class-conditional image generation and semantic inpainting verify the efficacy of our proposed module.
We present two new metrics for evaluating generative models in the class-conditional image generation setting. These metrics are obtained by generalizing the two most popular unconditional metrics: the Inception Score (IS) and the Frechet Inception D istance (FID). A theoretical analysis shows the motivation behind each proposed metric and links the novel metrics to their unconditional counterparts. The link takes the form of a product in the case of IS or an upper bound in the FID case. We provide an extensive empirical evaluation, comparing the metrics to their unconditional variants and to other metrics, and utilize them to analyze existing generative models, thus providing additional insights about their performance, from unlearned classes to mode collapse.
81 - Roy Ganz , Michael Elad 2021
The interest of the machine learning community in image synthesis has grown significantly in recent years, with the introduction of a wide range of deep generative models and means for training them. Such machines ultimate goal is to match the distri butions of the given training images and the synthesized ones. In this work, we propose a general model-agnostic technique for improving the image quality and the distribution fidelity of generated images, obtained by any generative model. Our method, termed BIGRoC (boosting image generation via a robust classifier), is based on a post-processing procedure via the guidance of a given robust classifier and without a need for additional training of the generative model. Given a synthesized image, we propose to update it through projected gradient steps over the robust classifier, in an attempt to refine its recognition. We demonstrate this post-processing algorithm on various image synthesis methods and show a significant improvement of the generated images, both quantitatively and qualitatively.
145 - Minguk Kang , Jaesik Park 2020
Conditional image generation is the task of generating diverse images using class label information. Although many conditional Generative Adversarial Networks (GAN) have shown realistic results, such methods consider pairwise relations between the em bedding of an image and the embedding of the corresponding label (data-to-class relations) as the conditioning losses. In this paper, we propose ContraGAN that considers relations between multiple image embeddings in the same batch (data-to-data relations) as well as the data-to-class relations by using a conditional contrastive loss. The discriminator of ContraGAN discriminates the authenticity of given samples and minimizes a contrastive objective to learn the relations between training images. Simultaneously, the generator tries to generate realistic images that deceive the authenticity and have a low contrastive loss. The experimental results show that ContraGAN outperforms state-of-the-art-models by 7.3% and 7.7% on Tiny ImageNet and ImageNet datasets, respectively. Besides, we experimentally demonstrate that contrastive learning helps to relieve the overfitting of the discriminator. For a fair comparison, we re-implement twelve state-of-the-art GANs using the PyTorch library. The software package is available at https://github.com/POSTECH-CVLab/PyTorch-StudioGAN.
We propose an unsupervised multi-conditional image generation pipeline: cFineGAN, that can generate an image conditioned on two input images such that the generated image preserves the texture of one and the shape of the other input. To achieve this goal, we extend upon the recently proposed work of FineGAN citep{singh2018finegan} and make use of standard as well as shape-biased pre-trained ImageNet models. We demonstrate both qualitatively as well as quantitatively the benefit of using the shape-biased network. We present our image generation result across three benchmark datasets- CUB-200-2011, Stanford Dogs and UT Zappos50k.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا