ترغب بنشر مسار تعليمي؟ اضغط هنا

Early evolution of the solar accretion disk inferred from Cr-Ti-O isotopes in individual chondrules

95   0   0.0 ( 0 )
 نشر من قبل Jonas M. Schneider
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Isotopic anomalies in chondrules hold important clues about the dynamics of mixing and transport processes in the solar accretion disk. These anomalies have been interpreted to indicate either disk-wide transport of chondrules or local heterogeneities of chondrule precursors. However, all previous studies relied on isotopic data for a single element (either Cr, Ti, or O), which does not allow distinguishing between source and precursor signatures as the cause of the chondrules isotope anomalies. Here we obtained the first combined O, Ti, and Cr isotope data for individual chondrules from enstatite, ordinary, and carbonaceous chondrites. We find that chondrules from non-carbonaceous (NC) chondrites have relatively homogeneous {Delta}17O, {epsilon}50Ti, and {epsilon}54Cr, which are similar to the compositions of their host chondrites. By contrast, chondrules from carbonaceous chondrites (CC) have more variable compositions. Although the compositions of the analyzed CC and NC chondrules may overlap for either {epsilon}50Ti, {epsilon}54Cr, or {Delta}17O, in multi-isotope space none of the CC chondrules plot in the compositional field of NC chondrites, and no NC chondrule plots within the field of CC chondrites. As such, our data reveal a fundamental isotopic difference between NC and CC chondrules, which is inconsistent with a disk-wide transport of chondrules across and between the NC and CC reservoirs. Instead, the isotopic variations among CC chondrules reflect local precursor heterogeneities, which most likely result from mixing between NC-like dust and a chemically diverse dust component that was isotopically similar to CAIs and AOAs.The same mixing processes, but on a larger, disk-wide scale, were likely responsible for establishing the distinct isotopic compositions of the NC and CC reservoirs, which represent in inner and outer disk, respectively.



قيم البحث

اقرأ أيضاً

The fundamentally different isotopic compositions of non-carbonaceous (NC) and carbonaceous (CC) meteorites reveal the presence of two distinct reservoirs in the solar protoplanetary disk that were likely separated by Jupiter. However, the extent of material exchange between these reservoirs, and how this affected the composition of the inner disk are not known. Here we show that NC meteorites display broadly correlated isotopic variations for Mo, Ti, Cr, and Ni, indicating the addition of isotopically distinct material to the inner disk. The added material resembles bulk CC meteorites and Ca-Al-rich inclusions in terms of its enrichment in neutron-rich isotopes, but unlike the latter materials is also enriched in s-process nuclides. The comparison of the isotopic composition of NC meteorites with the accretion ages of their parent bodies reveals that the isotopic variations within the inner disk do not reflect a continuous compositional change through the addition of CC dust, indicating an efficient separation of the NC and CC reservoirs and limited exchange of material between the inner and outer disk. Instead, the isotopic variations among NC meteorites more likely record a rapidly changing composition of the disk during infall from the Suns parental molecular cloud, where each planetesimal locks the instant composition of the disk when it forms. A corollary of this model is that late-formed planetesimals in the inner disk predominantly accreted from secondary dust that was produced by collisions among pre-existing NC planetesimals.
Chondrules formed by the melting of dust aggregates in the solar protoplanetary disk and as such provide unique insights into how solid material was transported and mixed within the disk. Here we show that chondrules from enstatite and ordinary chond rites show only small 50Ti variations and scatter closely around the 50Ti composition of their host chondrites. By contrast, chondrules from carbonaceous chondrites have highly variable 50Ti compositions, which, relative to the terrestrial standard, range from the small 50Ti deficits measured for enstatite and ordinary chondrite chondrules to the large 50Ti excesses known from Ca-Al-rich inclusions (CAIs). These 50Ti variations can be attributed to the addition of isotopically heterogeneous CAI-like material to enstatite and ordinary chondrite-like chondrule precursors. The new Ti isotopic data demonstrate that isotopic variations among carbonaceous chondrite chondrules do not require formation over a wide range of orbital distances, but can instead be fully accounted for by the incorporation of isotopically anomalous nuggets into chondrule precursors. As such, these data obviate the need for disk-wide transport of chondrules prior to chondrite parent body accretion and are consistent with formation of chondrules from a given chondrite group in localized regions of the disk. Lastly, the ubiquitous presence of 50Ti-enriched material in carbonaceous chondrites, and the lack of this material in the non-carbonaceous chondrites support the idea that these two meteorite groups derive from areas of the disk that remained isolated from each other through the formation of Jupiter.
115 - Jean Bollard 2017
The most abundant components of primitive meteorites (chondrites) are millimeter-sized glassy spherical chondrules formed by transient melting events in the solar protoplanetary disk. Using Pb-Pb dates of 22 individual chondrules, we show that primar y production of chondrules in the early solar system was restricted to the first million years after formation of the Sun and that these existing chondrules were recycled for the remaining lifetime of the protoplanetary disk. This is consistent with a primary chondrule formation episode during the early high-mass accretion phase of the protoplanetary disk that transitions into a longer period of chondrule reworking. An abundance of chondrules at early times provides the precursor material required to drive the efficient and rapid formation of planetary objects via chondrule accretion.
We report Li and B isotopic compositions of 10 Spinel-HIBonite spherules (SHIBs) separated from the Murchison meteorite, in order to understand their irradiation history in the early Solar System. The extremely low Be concentrations in SHIBs preclude detection of extinct 10Be, but instead allow for a search of the original Li and B isotopic ratios of the grains, as these isotopes are sensitive indicators for irradiation. We found that some of the SHIBs carried sub-chondritic 7Li/6Li and supra-chondritic 10B/11B ratios. Considering two possible irradiation scenarios that could have occurred in the early Solar System, irradiation of hibonite solids followed by addition of isotopically normal Li and B seems to be the most plausible explanation for the observed Li and B isotope ratios.
237 - C.W. Ormel , J.N. Cuzzi , 2008
We present a mechanism for chondrules to stick together by means of compaction of a porous dust rim they sweep up as they move through the dusty nebula gas. It is shown that dust aggregates formed out of micron-sized grains stick to chondrules, formi ng a porous dust rim. When chondrules collide, this dust can be compacted by means of rolling motions within the porous dust layer. This mechanism dissipates the collisional energy, compacting the rim and allowing chondrules to stick. The structure of the obtained chondrule-dust agglomerates (referred to as compounds) then consists of three phases: chondrules, porous dust, and dust that has been compacted by collisions. Subsequently, these compounds accrete their own dust and collide with other compounds. The evolution of the compound size distribution and the relative importance of the phases is calculated by a Monte Carlo code. Growth ends, and a simulation is terminated when all the dust in the compounds has been compacted. Numerous runs are performed, reflecting the uncertainty in the physical conditions at the chondrule formation time. It is found that compounds can grow by 1-2 orders of magnitudes in radius, upto dm-sizes when turbulence levels are low. However, relative velocities associated with radial drift form a barrier for further growth. Earlier findings that the dust sweep-up by chondrules is proportional to their sizes are confirmed. We contrast two scenarios regarding how this dust evolved further towards the densely packed rims seen in chondrites.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا