ﻻ يوجد ملخص باللغة العربية
We study the collective radiation properties of cold, trapped ensembles of atoms. We consider the high density regime with the mean interatomic distance being comparable to, or smaller than, the wavelength of the resonant optical radiation emitted by the atoms. We find that the emission rate of a photon from an excited atomic ensemble is strongly enhanced for an elongated cloud. We analyze collective single-excitation eigenstates of the atomic ensemble and find that the absorption/emission spectrum is broadened and shifted to lower frequencies as compared to the non-interacting (low density) or single atom spectrum. We also analyze the spatial and temporal profile of the emitted radiation. Finally, we explore how to efficiently excite the collective super-radiant states of the atomic ensemble from a long-lived storage state in order to implement matter-light interfaces for quantum computation and communication applications.
We describe a technique for manipulating quantum information stored in collective states of mesoscopic ensembles. Quantum processing is accomplished by optical excitation into states with strong dipole-dipole interactions. The resulting ``dipole bloc
We show that the dipole-dipole interaction between two Rydberg atoms can lead to substantial Abelian and non-Abelian gauge fields acting on the relative motion of the two atoms. We demonstrate how the gauge fields can be evaluated by numerical techni
Cooperative scattering has been the subject of intense research in the last years. In this article, we discuss the concept of cooperative scattering from a broad perspective. We briefly review the various collective effects that occur when light inte
We study a coupled array of coherently driven photonic cavities, which maps onto a driven-dissipative XY spin-$frac{1}{2}$ model with ferromagnetic couplings in the limit of strong optical nonlinearities. Using a site-decoupled mean-field approximati
We demonstrate Rabi flopping of small numbers of $rm{^{87}Rb}$ atoms between ground and Rydberg states with $nle 43$. Coherent population oscillations are observed for single atom flopping, while the presence of two or more atoms decoheres the oscill