ترغب بنشر مسار تعليمي؟ اضغط هنا

Solar Flare Energy Partitioning and Transport -- the Impulsive Phase (a Heliophysics 2050 White Paper)

69   0   0.0 ( 0 )
 نشر من قبل Graham Kerr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solar flares are a fundamental component of solar eruptive events (SEEs; along with solar energetic particles, SEPs, and coronal mass ejections, CMEs). Flares are the first component of the SEE to impact our atmosphere, which can set the stage for the arrival of the associated SEPs and CME. Magnetic reconnection drives SEEs by restructuring the solar coronal magnetic field, liberating a tremendous amount of energy which is partitioned into various physical manifestations: particle acceleration, mass and magnetic-field eruption, atmospheric heating, and the subsequent emission of radiation as solar flares. To explain and ultimately predict these geoeffective events, the heliophysics community requires a comprehensive understanding of the processes that transform and distribute stored magnetic energy into other forms, including the broadband radiative enhancement that characterises flares. This white paper, submitted to the Heliophysics 2050 Workshop, discusses the flare impulsive phase part of SEEs, setting out the questions that need addressing via a combination of theoretical, modelling, and observational research. In short, by 2050 we must determine the mechanisms of particle acceleration and propagation, and must push beyond the paradigm of energy transport via nonthermal electron beams, to also account for accelerated protons & ions and downward directed Alfven waves.

قيم البحث

اقرأ أيضاً

Solar flares are a fundamental component of solar eruptive events (SEEs; along with solar energetic particles, SEPs, and coronal mass ejections, CMEs). Flares are the first component of the SEE to impact our atmosphere, which can set the stage for th e arrival of the associated SEPs and CME. Magnetic reconnection drives SEEs by restructuring the solar coronal magnetic field, liberating a tremendous amount of energy which is partitioned into various physical manifestations: particle acceleration, mass and magnetic-field eruption, atmospheric heating, and the subsequent emission of radiation as solar flares. To explain and ultimately predict these geoeffective events, the heliophysics community requires a comprehensive understanding of the processes that transform and distribute stored magnetic energy into other forms, including the broadband radiative enhancement that characterises flares. This white paper, submitted to the Heliophysics 2050 Workshop, discusses the flare gradual phase part of SEEs, setting out the questions that need addressing via a combination of theoretical, modelling, and observational research. In short, the flare gradual phase persists much longer than predicted so, by 2050, we must identify the characteristics of the significant energy deposition sustaining the gradual phase, and address the fundamental processes of turbulence and non-local heat flux.
We study the relationship between implosive motions in a solar flare, and the energy redistribution in the form of oscillatory structures and particle acceleration. The flare SOL2012-03-09T03:53 (M6.4) shows clear evidence for an irreversible (stepwi se) coronal implosion. Extreme-ultraviolet (EUV) images show at least four groups of coronal loops at different heights overlying the flaring core undergoing fast contraction during the impulsive phase of the flare. These contractions start around a minute after the flare onset, and the rate of contraction is closely associated with the intensity of the hard X-ray (HXR) and microwave emissions. They also seem to have a close relationship with the dimming associated with the formation of the Coronal Mass Ejection (CME) and a global EUV wave. Several studies now have detected contracting motions in the corona during solar flares that can be interpreted as the implosion necessary to release energy. Our results confirm this, and tighten the association with the flare impulsive phase. We add to the phenomenology by noting the presence of oscillatory variations revealed by GOES soft X-rays (SXR) and spatially-integrated EUV emission at 94 and 335 {AA}. We identify pulsations of $approx 60$ seconds in SXR and EUV data, which we interpret as persistent, semi-regular compressions of the flaring core region which modulate the plasma temperature and emission measure. The loop oscillations, observed over a large region, also allow us to provide rough estimates of the energy temporarily stored in the eigenmodes of the active-region structure as it approaches its new equilibrium.
We present observations of electron energization in magnetic reconnection outflows during the pre-impulsive phase of solar flare SOL2012-07-19T05:58. During a time-interval of about 20 minutes, starting 40 minutes before the onset of the impulsive ph ase, two X-ray sources were observed in the corona, one above the presumed reconnection region and one below. For both of these sources, the mean electron distribution function as a function of time is determined over an energy range from 0.1~keV up to several tens of keV, for the first time. This is done by simultaneous forward fitting of X-ray and EUV data. Imaging spectroscopy with RHESSI provides information on the high-energy tail of the electron distribution in these sources while EUV images from SDO/AIA are used to constrain the low specific electron energies. The measured electron distribution spectrum in the magnetic reconnection outflows is consistent with a time-evolving kappa-distribution with $kappa =3.5-5.5$. The spectral evolution suggests that electrons are accelerated to progressively higher energies in the source above the reconnection region, while in the source below, the spectral shape does not change but an overall increase of the emission measure is observed, suggesting density increase due to evaporation. The main mechanisms by which energy is transported away from the source regions are conduction and free-streaming electrons. The latter dominates by more than one order of magnitude and is comparable to typical non-thermal energies during the hard X-ray peak of solar flares, suggesting efficient acceleration even during this early phase of the event.
We have studied the chromospheric evaporation flow during the impulsive phase of the flare by using the Hinode/EIS observation and 1D hydrodynamic numerical simulation coupled to the time-dependent ionization. The observation clearly shows that the s trong redshift can be observed at the base of the flaring loop only during the impulsive phase. We performed two different numerical simulations to reproduce the strong downflows in FeXII and FeXV during the impulsive phase. By changing the thermal conduction coefficient, we carried out the numerical calculation of chromospheric evaporation in the thermal conduction dominant regime (conductivity coefficient kappa0 = classical value) and the enthalpy flux dominant regime (kappa0 = 0.1 x classical value). The chromospheric evaporation calculation in the enthalpy flux dominant regime could reproduce the strong redshift at the base of the flare during the impulsive phase. This result might indicate that the thermal conduction can be strongly suppressed in some cases of flare. We also find that time-dependent ionization effect is importance to reproduce the strong downflows in Fe XII and Fe XV.
The authors of this white paper met on 16-17 January 2020 at the New Jersey Institute of Technology, Newark, NJ, for a 2-day workshop that brought together a group of heliophysicists, data providers, expert modelers, and computer/data scientists. The ir objective was to discuss critical developments and prospects of the application of machine and/or deep learning techniques for data analysis, modeling and forecasting in Heliophysics, and to shape a strategy for further developments in the field. The workshop combined a set of plenary sessions featuring invited introductory talks interleaved with a set of open discussion sessions. The outcome of the discussion is encapsulated in this white paper that also features a top-level list of recommendations agreed by participants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا