ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact and dynamics of hate and counter speech online

114   0   0.0 ( 0 )
 نشر من قبل Joshua Garland
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Citizen-generated counter speech is a promising way to fight hate speech and promote peaceful, non-polarized discourse. However, there is a lack of large-scale longitudinal studies of its effectiveness for reducing hate speech. To this end, we perform an exploratory analysis of the effectiveness of counter speech using several different macro- and micro-level measures to analyze 180,000 political conversations that took place on German Twitter over four years. We report on the dynamic interactions of hate and counter speech over time and provide insights into whether, as in `classic bullying situations, organized efforts are more effective than independent individuals in steering online discourse. Taken together, our results build a multifaceted picture of the dynamics of hate and counter speech online. While we make no causal claims due to the complexity of discourse dynamics, our findings suggest that organized hate speech is associated with changes in public discourse and that counter speech -- especially when organized -- may help curb hateful rhetoric in online discourse.



قيم البحث

اقرأ أيضاً

Online debates are often characterised by extreme polarisation and heated discussions among users. The presence of hate speech online is becoming increasingly problematic, making necessary the development of appropriate countermeasures. In this work, we perform hate speech detection on a corpus of more than one million comments on YouTube videos through a machine learning model fine-tuned on a large set of hand-annotated data. Our analysis shows that there is no evidence of the presence of serial haters, intended as active users posting exclusively hateful comments. Moreover, coherently with the echo chamber hypothesis, we find that users skewed towards one of the two categories of video channels (questionable, reliable) are more prone to use inappropriate, violent, or hateful language within their opponents community. Interestingly, users loyal to reliable sources use on average a more toxic language than their counterpart. Finally, we find that the overall toxicity of the discussion increases with its length, measured both in terms of number of comments and time. Our results show that, coherently with Godwins law, online debates tend to degenerate towards increasingly toxic exchanges of views.
The spread of COVID-19 has sparked racism, hate, and xenophobia in social media targeted at Chinese and broader Asian communities. However, little is known about how racial hate spreads during a pandemic and the role of counterhate speech in mitigati ng the spread. Here we study the evolution and spread of anti-Asian hate speech through the lens of Twitter. We create COVID-HATE, the largest dataset of anti-Asian hate and counterhate spanning three months, containing over 30 million tweets, and a social network with over 87 million nodes. By creating a novel hand-labeled dataset of 2,400 tweets, we train a text classifier to identify hate and counterhate tweets that achieves an average AUROC of 0.852. We identify 891,204 hate and 200,198 counterhate tweets in COVID-HATE. Using this data to conduct longitudinal analysis, we find that while hateful users are less engaged in the COVID-19 discussions prior to their first anti-Asian tweet, they become more vocal and engaged afterwards compared to counterhate users. We find that bots comprise 10.4% of hateful users and are more vocal and hateful compared to non-bot users. Comparing bot accounts, we show that hateful bots are more successful in attracting followers compared to counterhate bots. Analysis of the social network reveals that hateful and counterhate users interact and engage extensively with one another, instead of living in isolated polarized communities. Furthermore, we find that hate is contagious and nodes are highly likely to become hateful after being exposed to hateful content. Importantly, our analysis reveals that counterhate messages can discourage users from turning hateful in the first place. Overall, this work presents a comprehensive overview of anti-Asian hate and counterhate content during a pandemic. The COVID-HATE dataset is available at http://claws.cc.gatech.edu/covid.
Hateful rhetoric is plaguing online discourse, fostering extreme societal movements and possibly giving rise to real-world violence. A potential solution to this growing global problem is citizen-generated counter speech where citizens actively engag e in hate-filled conversations to attempt to restore civil non-polarized discourse. However, its actual effectiveness in curbing the spread of hatred is unknown and hard to quantify. One major obstacle to researching this question is a lack of large labeled data sets for training automated classifiers to identify counter speech. Here we made use of a unique situation in Germany where self-labeling groups engaged in organized online hate and counter speech. We used an ensemble learning algorithm which pairs a variety of paragraph embeddings with regularized logistic regression functions to classify both hate and counter speech in a corpus of millions of relevant tweets from these two groups. Our pipeline achieved macro F1 scores on out of sample balanced test sets ranging from 0.76 to 0.97---accuracy in line and even exceeding the state of the art. On thousands of tweets, we used crowdsourcing to verify that the judgments made by the classifier are in close alignment with human judgment. We then used the classifier to discover hate and counter speech in more than 135,000 fully-resolved Twitter conversations occurring from 2013 to 2018 and study their frequency and interaction. Altogether, our results highlight the potential of automated methods to evaluate the impact of coordinated counter speech in stabilizing conversations on social media.
Many people struggling with mental health issues are unable to access adequate care due to high costs and a shortage of mental health professionals, leading to a global mental health crisis. Online mental health communities can help mitigate this cri sis by offering a scalable, easily accessible alternative to in-person sessions with therapists or support groups. However, people seeking emotional or psychological support online may be especially vulnerable to the kinds of antisocial behavior that sometimes occur in online discussions. Moderation can improve online discourse quality, but we lack an understanding of its effects on online mental health conversations. In this work, we leveraged a natural experiment, occurring across 200,000 messages from 7,000 online mental health conversations, to evaluate the effects of moderation on online mental health discussions. We found that participation in group mental health discussions led to improvements in psychological perspective, and that these improvements were larger in moderated conversations. The presence of a moderator increased user engagement, encouraged users to discuss negative emotions more candidly, and dramatically reduced bad behavior among chat participants. Moderation also encouraged stronger linguistic coordination, which is indicative of trust building. In addition, moderators who remained active in conversations were especially successful in keeping conversations on topic. Our findings suggest that moderation can serve as a valuable tool to improve the efficacy and safety of online mental health conversations. Based on these findings, we discuss implications and trade-offs involved in designing effective online spaces for mental health support.
Hateful and offensive content detection has been extensively explored in a single modality such as text. However, such toxic information could also be communicated via multimodal content such as online memes. Therefore, detecting multimodal hateful c ontent has recently garnered much attention in academic and industry research communities. This paper aims to contribute to this emerging research topic by proposing DisMultiHate, which is a novel framework that performed the classification of multimodal hateful content. Specifically, DisMultiHate is designed to disentangle target entities in multimodal memes to improve hateful content classification and explainability. We conduct extensive experiments on two publicly available hateful and offensive memes datasets. Our experiment results show that DisMultiHate is able to outperform state-of-the-art unimodal and multimodal baselines in the hateful meme classification task. Empirical case studies were also conducted to demonstrate DisMultiHates ability to disentangle target entities in memes and ultimately showcase DisMultiHates explainability of the multimodal hateful content classification task.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا